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Abstract. In this paper we propose a novel approach for automatic segmentation
of cartilage using a statistical atlas and efficient primal/dual linear programming.
To this end, a novel statistical atlas construction is considered from registered
training examples. Segmentation is then solved through registration which aims
at deforming the atlas such that the conditional posterior of the learned (atlas)
density is maximized with respect to the image. Such a task is reformulated using
a discrete set of deformations and segmentation becomes equivalent to finding
the set of local deformations which optimally match the model to the image. We
evaluate our method on 56 MRI data sets (28 used for the model and 28 used for
evaluation) and obtain a fully automatic segmentation of patella cartilage volume
with an overlap ratio of 0.84 with a sensitivity and specificity of 94.06% and
99.92%, respectively.

1 Introduction

Degeneration of knee joint cartilage is an important and early indicator of osteoarthritis
(OA) which is one of the major socio-economic burdens nowadays [1]. Accurate quan-
tification of the articular cartilage degeneration in an early stage using MR images is a
promising approach in diagnosis and therapy for this disease [2]. Particularly, volume
and thickness measurement of cartilage tissue has been shown to deliver significant pa-
rameters in assessment of pathologies [3–5]. Here, accurate computer-aided diagnosis
tools could improve the clinical routine where image segmentation plays a crucial role.
In order to overcome the time-consuming and tedious work of manual segmentation,
one tries to automate the segmentation as much as possible.

Many automatic and semi-automatic cartilage segmentation methods have been pro-
posed. Folkesson et al. [6] propose a hierarchical classification scheme for automatic
segmentation of cartilage in low field MR images. A semi-automatic method based on
watershed transformation and pre-segmentation using [6] is presented by Dam et al.
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[7]. An earlier work by Grau et al. [8] proposes an extension to the standard water-
shed transformation for semi-automatic segmentation. Cheong et al. [9] compare dif-
ferent model-based approaches. A very recent work of Fripp et al. [10] proposes auto-
matic segmentation of bone in order to extract the bone-cartilage interfaces (BCI) with
promising results. However, similar to [7] we believe that current automatic approaches
cannot achieve the high accuracy and precision needed in the clinical application. In
most cases, interactive refinement is needed. Still, a good automatically achieved ini-
tialization could improve the daily work of radiologists, immensely. Therefore, we de-
veloped a novel approach for automatic segmentation of cartilage using a statistical atlas
and efficient primal/dual linear programming. Our results provide a very good initializa-
tion for subsequent interaction steps and may even provide good enough segmentation
results for certain applications.

The remainder of this paper is organized as follows; In Section 2 we present the
construction of the probabilistic atlas, while in Section 3 we derive the formulation of
the atlas-matching problem in a discrete setting. In Section 4 we briefly introduce the
efficient optimization method based on primal/dual linear programming. Our results are
presented in Section 5 and compared to the related methods. The last Section concludes
our paper.

2 Probabilistic Atlas Construction

Let us assume that n cartilage registered volumes are available V = {V1,V1, ...,Vn}.
The task of atlas construction refers to the extraction of a model that combines the
intensities of the training set to an average volume, a rather simplistic dimensionality
reduction. On the other hand, a statistical atlas might be able to capture the variations
of the training set, and often consists of

– VM : Ω→ R + that is an optimal representative volume - according to some crite-
rion - derived from the training set,

– σM : Ω → R + that is a variance map, determined according to the agreement be-
tween the atlas and the training set,

– px(i) : a pd f defined at each voxel x which can be for instance a Gaussian density,

px(i) = 1√
2πσM (x)

e
−

(i−VM (x))2

2σM (x)2 .

with Ω being the volume domain. Towards the construction of such a probabilistic atlas
representation [11] one can consider solving the inference problem at the voxel level
(x). Given a set of values [V1(x), ...,Vn(x)], recover a distribution (px(i)) that has an
optimal support from the data. The maximum posterior of this distribution along the
training samples (assuming independences between voxels and using the [-log] of the
density) is equivalent to minimizing

E(VM ,σM ) =
∫∫∫

Ω

n

∑
i=1

[
log(σ2

M (x))+
(Vi(x)−VM (x))2

2σ2
M (x)

]
dx. (1)

However, volumes correspond to a collection of organs which exhibit certain spatial and
intra-subject smoothness properties, therefore one can expect a smooth probabilistic
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atlas preserving contours/boundaries between organs. We can introduce such abstract
constraints using regularization terms [12], which penalize the spatial derivatives of the
field to be recovered:

E(VM ,σM ) = α

∫∫∫
Ω

n

∑
i=1

[
log(σ2

M (x))+
(Vi(x)−VM (x)2

2σ2
M (x)

]
dx

+
∫∫∫

Ω

ψ(∇σM (x)) dx+
∫∫∫

Ω

g(|∇VM (x)|)ψ(∇VM (x)) dx,

(2)

where α is a constant that balances the data-fidelity and the smoothness term, ψ (the
quadratic form is considered in the scope of this paper) is a regularization function, and
g(|∇V |) = 1

1+|∇V |a a monotonically decreasing function which overwrites the smooth-
ness constraint when a consensus for being at an edge is observed. The calculus of
variations and a gradient descent method can now be used to recover the solution for
the prior model (VM ,σM ). One can initialize the process using one of the training vol-
umes and constant variances. Furthermore, one can only consider a sub-domain of the
volume domain which refers to a narrow-band zone from the cartilage since this is the
component of interest.

3 Cartilage Segmentation

Let us now consider a new volume V : [1,X ]× [1,Y ]× [1,Z] to be segmented. We can
reformulate segmentation as finding the region of interest in this volume, which best
matches the atlas. In general, the two volumes are related with a non linear transforma-
tion T , that minimizes

E(T ) =
∫∫∫

Ω

ρ(V (T (x)),VM (x),σM (x))dx =
∫∫∫

Ω

ρM (V (T (x)))dx (3)

where ρM is a distance metric used to determine the most meaningful correspondence
between the atlas and the image domain Ω. The distance metric in our approach could
be explicitly defined using the probabilistic nature of the atlas, since VM (x) is assumed
to be sample drawn from the density px(), therefore one can expect that the optimal
segmentation will project the voxel x of the atlas to image intensity V (T (x)) that refers
to the maximum of px() leading to the minimization of

ρM (V (T (x))) =

[
log(σ2

M (x))+
(V (T (x))−VM (x))2

2σ2
M (x)

]
(4)

Since we are interested in local registration (assuming a global pre-registration ex-
ists), let us introduce a deformation grid G : [1,K]× [1,L]× [1,M] (usually K � X ,
L � Y , and M � Z) super-imposed to the atlas. The central idea of our approach is to
deform the grid (with a 3D displacement vector dp for each control point) such that the
structures in the atlas and the image to be segmented are perfectly aligned. The trans-
formation of a voxel x can be expressed using a linear or non-linear combination of the
grid points, or

T (x) = x+D(x), D(x) = ∑
p∈G

η(|x−p|)dp (5)
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where η(·) is the weighting function measuring the contribution of the control point p
to the displacement field D . The position of point p is denoted as p. In such a theoretical
setting without loss of generality we consider Free Form Deformations (FFD) based on
cubic B-splines as a transformation model which have been often considered for image
registration [13].

By defining the atlas-matching problem based on such a deformation model we can
now reformulate the criterion earlier introduced,

Edata(T ) = ∑
p∈G

∫∫∫
Ω

η
−1(|x−p|) ρM (V (T (x)))dx (6)

where η−1(·) is the inverse projection for the contribution to the objective of the image
point x according to the influence of the control point p.

Such a term will guarantee intensity correspondence between the two images. Hence,
this term is also called the data term. The transformation due to the interpolation inherits
some implicit smoothness properties. However, in order to avoid folding of the defor-
mation grid, one can consider a smoothness term on the grid domain, or

Esmooth(T ) = ∑
p∈G

φ(|∇G dp|) (7)

with φ being a smoothness penalty function for instance penalizing the first derivatives
of the grid deformation. The complete term associated with the registration problem is
then defined as the sum of the data and smoothness term. The most common way to
obtain the transformation parameters is through the use of a gradient-descent method in
an iterative approach which due to the non-convexity of the cost function could produce
sub-optimal results. One way to overcome this constraint is through the use of more
efficient optimization techniques, like combinatorial programming [14].

Let us now consider a discrete set of labels L = {u1, ...,ui} corresponding to a
quantized version of the deformation space Θ = {d1, ...,di}. A label assignment up to
a grid node p is associated with displacing the node by the corresponding vector dup .
The image transformation associated with a certain discrete labeling u becomes

D(x) = ∑
p∈G

η(|x−p|)dup . (8)

One can reformulate the registration as a discrete optimization problem, that is assign
individual labels up to the grid nodes such that

Edata(u) = ∑
p∈G

∫∫∫
Ω

η
−1(|x−p|)ρM (V (T (x)))dx≈ ∑

p∈G
Vp(up) (9)

where Vp(·) represents a local similarity metric. In this setting, the singleton potential
functions Vp(·) are not independent, thus the defined data term can only be approxi-
mated. Hence, we pre-compute the |L |× |G | data term look-up table for the atlas and a
given image by simple shift operators. The entry for node p and labels up is determined
by

Vp(up) =
∫∫∫

Ωp

ρM (V (T (x)))dx. (10)
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We determine the metric directly from the image patch Ωp centered at node p. Thus,
the weighting function η−1(·) can be neglected.

In order to define the smoothness in the label domain one can express distances
between the deformation vectors using difference between labels if a ranking has been
considered within the definition of the label set, or

Esmooth(u) = ∑
p,q∈E(p)

Vpq(up,uq), Vpq(up,uq) = min(|dup −duq |,T ) (11)

where E represents the neighborhood system associated with the deformation grid G .
For the distance Vpq(·, ·) we consider a simple piecewise smoothness truncated term
based on the euclidean geometric distances between the deformations corresponding
to the assigned labels with T being the maximum penalty. Such a smoothness term
together with the data term allows to convert the problem of image registration into the
form of a Markov Random Field (MRF) in a discrete domain, or

Etotal(u) = ∑
p∈G

Vp(up)+ ∑
p,q∈E(p)

Vpq(up,uq). (12)

4 Linear Programming

For optimizing the above discrete Markov Random Field, we will make use of a re-
cently proposed method, we call Fast-PD [15]. This is an optimization technique, which
builds upon principles drawn from the duality theory of linear programming in order to
efficiently derive almost optimal solutions for a very wide class of NP-hard MRFs. In-
stead of working directly with the discrete MRF optimization problem above, Fast-PD
first reformulates that problem as an integer linear programming problem (the primal
problem) and also takes the dual of the corresponding LP relaxation. Given these 2
problems, i.e. the primal and the dual, Fast-PD then generates a sequence of integral
feasible primal solutions, as well as a sequence of dual feasible solutions. These two
sequences of solutions make local improvements to each other until the primal-dual gap
(i.e. the gap between the objective function of the primal and the objective function of
the dual) becomes small enough. Once this happens, the last generated primal solution
is guaranteed to be an approximately optimal solution, i.e. within a certain distance
from the optimum (in fact, this distance can be shown to be smaller than the achieved
primal-dual gap). This is exactly what the next theorem, also known as the primal-dual
principle, states.

Primal-Dual Principle 1 (Primal-Dual principle) Consider the following pair of pri-
mal and dual linear programs:

PRIMAL: min cT x DUAL: max bT y
s.t. Ax = b,x≥ 0 s.t. AT y≤ c

and let x,y be integral-primal and dual feasible solutions, having a primal-dual gap
less than f , i.e.:

cTx≤ f ·bTy.

Then x is guaranteed to be an f -approximation to the optimal integral solution x∗, i.e.,
cTx∗ ≤ cTx≤ f · cTx∗
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(a) (b) (c) (d)

Fig. 1: (a) VM and (b) σM of the statistical atlas. In (a) the region of interest for the local registration and the atlas segmen-
tation are overlaid. (c) Automatic segmentation compared to (d) ground truth. For this example the DSC of the segmented
volume is 0.90 and the sensitivity is 93.28%. The lower interface between cartilage and surrounding soft-tissue is well
preserved.

Fast-PD is a very general MRF optimization method, which can handle a very wide
class of MRFs. Essentially, it only requires that the pairwise potential function is non-
negative (i.e., Vpq(·, ·) ≥ 0). Furthermore, as already mentioned, it can guarantee that
the generated solution is always within a worst-case bound from the optimum. In fact,
besides this worst-case bound, it can also provide per-instance approximation bounds,
which prove to be much tighter, i.e. very close to 1, in practice. It thus allows the global
optimum to be found up to a user/application bound. Finally, it provides great computa-
tional efficiency, since it is typically 3-9 times faster than any other MRF optimization
technique with guaranteed optimality properties.

5 Experiments

We evaluated our segmentation method on 56 T2-weighted MRI data sets of probands
each with a resolution of 256x256x20 and a voxel size of 0.625x0.625x3.0 millime-
ters. The patella cartilage is manually segmented by clinical experts in a slice-by-slice
fashion in all volumes. We are using 28 data sets for the atlas construction and segment
automatically the remaining 28 data sets using the atlas-matching approach described
above. We perform a (standard) global pre-registration with 9 degrees of freedom (trans-
lation, rotation, and scaling) using available methods5. In such a pre-registration we
only consider the VM of the atlas. The global registration provides a sufficient ini-
tialization for our subsequent non-rigid atlas-matching. All experiments are done on an
Intel Centrino 2.16 GHz machine. A full registration of two images including the global
pre-registration takes about 45 seconds where our non-rigid atlas-matching takes less
than 20 seconds. The matching is done in a pyramidal fashion with two resolution lev-
els. The quantized displacement space is sampled with five steps in the six main 3D
directions with a step size of 0.8 mm for the coarser resolution level and 0.25 mm on
the full volume resolution. On each level we perform ten iterations which are sufficient
to let the matching converge. The control point spacing of the deformation grid is set to
10 mm for the coarser level and 5 mm for the finer pyramid level.

5 National Library of Medicine Insight Segmentation and Registration Toolkit.
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Semi-automatic DSC Mean (Std) Sensitivity Specificity Interaction Cartilage

Grau et al. [8] 0.90(±0.01) 90.03% 99.87% 5-10 min Tibia, Femur, Patella
Dam et al. [7] 0.92(±n/a) 93.00% 99.99% max 10 min Tibia, Femur
Automatic DSC Mean (Std) Sensitivity Specificity Interaction Cartilage
Cheong et al. [17] 0.64(±0.15) 74.00% n/a 0 Medial Tibia
Cheong et al. [17] 0.72(±0.09) 79.00% n/a 0 Lateral Tibia
Folkesson et al. [6] 0.80(±0.03) 90.01% 99.80% 0 Tibia, Femur
Our Approach 0.84(±0.06) 94.06% 99.92% 0 Patella

Table 1: Comparison of different methods for cartilage segmentation. In the upper part the results of semi-automatic methods
are shown. The lower part shows fully automatic methods.

In order to evaluate the segmentation results we compute several common measure-
ments [16], namely the Dice similarity coefficient (DSC), the sensitivity, the specificity,
and the average surface distance (ASD) from the manual segmentations. The ASD is
computed in millimeters from an anisotropic 3D Euclidean distance transform of the
automatic and manual segmentation surfaces and the overlay of the respective surface.
We achieve an ASD of 0.49(±0.23) mm which is below the voxel size. In Table 1 we
compare our results to methods reported in the literature.

However, due to the variability in the MRI sequences,

Fig. 2: Color-encoded visualization
of the average surface distance for the
example shown in Fig. 1 (c)/(d).

volume resolution, and target anatomy such a direct com-
parison can only give an idea about the performance of the
different methods. Compared to the semi-automatic meth-
ods [7, 8] we get a worse DSC, but a slightly better sen-
sitivity and specificity. Assuming that most of the errors
occur at the boundaries, small object such as patella car-
tilage are penalized and get lower DSC score than larger
objects such as the tibial or femoral cartilage. Still, our ap-
proach obtains better results than the automatic classification scheme proposed in [6].
From [17] we consider only the results of the proposed Patch-based Active Appearance
Model, since it performs best in their evaluation of different automatic model-based ap-
proaches. Fripp et al. [10] report a median DSC for the bone-cartilage interface (BCI)
of 0.93. However, the extraction of BCI does not provide closed volumes and thus is
not directly comparable to our method.

6 Conclusion

In this paper we have proposed a novel approach for fully automatic segmentation of
knee cartilage using a statistical atlas and efficient primal/dual linear programming.
We could achieve segmentation results for proband data with a mean overlap ratio of
0.84, a sensitivity and specificity of 94.06% and 99.92% compared to manual expert
segmentation. Such an automatic approach could provide significant initialization im-
provements in applications with high accuracy constraints where interactive refinements
are unavoidable. In less constrained applications such as rough classification tasks our
method could even provide the final results. We will evaluate the robustness of our ap-
proach on patient data including higher variations in shape appearance. In future work
also more complex priors including shape models will be investigated and the method
will also be extended to other anatomy.
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