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Abstract

In this paper, we present a novel approach for the relative pose estimation
problem from point correspondences extracted from image pairs. Unlike
classical algorithms, such as the Gold Standard algorithm, the proposed ap-
proach ensures that the matched points are photo-consistent throughout the
pose estimation process. In fact, common algorithms use the photometric
information to extract the feature points and to establish the 2D point corre-
spondences. Then, they focus on minimizing, in a non-linear scheme, geo-
metric distances between the projection of reconstructed 3D points and the
coordinates of the extracted image points without taking the photometric in-
formation into account. The approach we propose in this paper merges ge-
ometric and photometric information in a unified cost function for the final
non-linear minimization. This allows us to achieve results with higher pre-
cision and also with higher convergence frequency. Extensive experiments
with ground truth on synthetic data show the superiority of the proposed ap-
proach in terms of robustness and precision. The simulation results have been
confirmed by several tests on real image data.

1 Introduction
In Computer Vision, relative pose estimation corresponds to the task of finding the ge-
ometric transformation between two cameras. Using two images each acquired by one
camera, it is possible to use a set of corresponding feature points to estimate the pose
parameters, i.e. the relative rotation and translation between the two cameras. This task
is a core problem of several computer vision applications (such as 3D reconstruction,
vision-based control or augmented reality) and it has been extensively studied for the last
decades. Since the seminal work of Longuet-Higgins [9] where an 8-point algorithm was
proposed to compute the pose via the essential matrix, many works have been published
either to generalize it to the non-calibrated case [4, 1], or to improve the robustness [6, 12]
or as proposed recently, to solve it efficiently in a closed-form algorithm with the mini-
mal set of five points [11]. The standard scheme that one can find in reference Computer
Vision books [7, 2] or in earlier work (e.g. [8]) is to actually use several corresponding
points (from some tens to few hundreds) and to minimize a least-squares cost function
making use of all available correspondences. In practice, this allows the pose estimation



Figure 1: Classical approaches set aside the image photometric information once the
matching has been established. Only geometric information is used in the pose estimation.

as well as the 3D points reconstruction to be robust and precise. A data normalization pre-
cedes a linear estimation or a closed-form solution which generally serves as initialization
of such non-linear minimization. The most commonly used algorithm to perform this task
is the well known Gold Standard algorithm [7]. Based on minimizing the reprojection er-
ror, this algorithm allows to obtain the Maximum Likelihood estimate of the fundamental
matrix (and can be easily adapted to the essential matrix) whose decomposition provides
an estimation of the pose. As depicted by figure 1, this algorithm makes only use of
the coordinates of the image points. No photometric information (color, texture, image
gradients,...) is used once the matching of the feature points has been established.

The Gold Standard algorithm works well in practice and gives satisfactory results in
most cases. Recent improvements have been proposed such that the linear estimation has
a better conditioned measurement matrix [12] and such that the non-linear optimization
quickly and efficiently converges toward the global minimum [5]. In the presence of small
number of noisy feature points, even if a robust estimation [3] has been applied to remove
outliers in the matching process, it is hard to recover a precise pose. It is possible to
get a geometrically correct and globally optimal pose, but it can be, in some cases, far
from the real one. This is mainly due to the fact that such approaches do not guarantee a
photometric consistency with respect to the images.
In this paper, we introduce an additional constraint to the traditional reprojection error
during the final non-linear optimization. To state it simply: the points will be additionally
constrained to have the same appearance in both images.

2 Theoretical Background
Notations: Bold upper-case variables are matrices. Bold lower-case variables are vec-
tors. X are 3D points in homogeneous coordinates. w is the projection function trans-
forming a 3D homogeneous point to a 2D homogeneous point. I is the image function
that takes a 2D point and gives an intensity. We suppose that the reference frame of the
3D points X is aligned with the first camera that pictured I1. Its projection matrix is
then the identity matrix I4×4. The transformation matrix between the first and the second

camera that pictured I2 is T =
[

R t
0 1

]
∈ SE(3) where R ∈ SO(3) and t ∈ R3 are the



rotation matrix and the translation vector.
We are interested in estimating the rigid motion between two calibrated views using

a set of 2D points extracted from the images. The relation between two corresponding
points p (in the first image) and p′ (in the second image) can be described using the
essential matrix E = [t]×R:

p′>K′−>EK−1p = 0 , (1)

where K and K′ are the camera intrinsic parameter matrices of the first and the second
camera. The estimation of this matrix provides (via a simple decomposition) the trans-
lation t (up to a scale) and the rotation R. The essential matrix is generally computed
using the following steps. Given a set of putative matching points (e.g. obtained using
[10]), it is possible to remove outliers using a robust estimation [3] based on estimating
the essential matrix with a minimal sets of points (e.g. [11]). Then, a linear estimation
is performed (e.g. using [6] or [12]) in order to have an initial estimate of the pose (R,
t) and an initial reconstruction of the 3D points (up to a scale) for the final non-linear
minimization.

The non-linear estimation iteratively updates the motion parameters and the recon-
structed 3D points by computing increments that reduce the distance between projection
of the 3D points and their corresponding image points. The sum-of-squared differences
cost function generally used is the following:

argminXi,T ∑
i

d (pi,Kw(Xi))
2 +d

(
p′i,K

′w(TXi)
)2

, (2)

This error minimization only ensures geometric validity of the structure consistency of
the points. It is important to note that in this framework the result of the feature points
detection is never corrected based on photometric information.

3 Proposed Method
Due to some factors that generally provide inaccurate feature points localization (such as
inappropriate threshold setting in the robust outliers removal, motion blur or noise in the
images), the standard way that we described above lacks precision. This is done to the
fact that the feature point positions are only corrected during the non-linear minimization
via the optimization of the 3D point positions. This correction is only based on geometric
constraints related exclusively on the points coordinates. Therefore, a large amount of
information is set aside since no photometric information is used once the matching has
been established.

To make use of all available information throughout the pose estimation process, we
propose to alter the cost function used in the non-linear minimization such that photo-
metric information is also taken into account. Here We describe how to incorporate this
function in the final pose refinement step. Figure 2 gives an overview of our method.

3.1 Combining Geometric Distances with Intensity Differences
In order to incorporate photometric information, we consider the fact that the neighbor-
hood of the 2D points pi and p′i should be photometrically consistent. To enforce their
consistency, we optimize the pose parameters and the 3D points such that, both the cost



Figure 2: Our approach uses the photometric information not only for the matching but
also for the non-linear estimation where photometric and geometric cues are combined.

function defined in equation (2) and the sum-of-squared differences of the intensities of
the projected neighboring points are minimized. Here, some issues should be carefully
taken into account:

1. How can we define the neighborhood of the 2D points in the two images ?

2. At which stage the photometric term should be used ?

3. How should the geometric and the photometric terms be weighted ?

Concerning the first issue, we define the neighborhood of the feature points in the
two images using samples on the tangent plane of the reconstructed 3D points since any
surface can be locally approximated as planar, as shown in Figure (3). We will show later
that even a fronto-parallel approximation of the tangent planes is enough to improve the
results. As a consequence the neighborhood of 2D feature points will be adapted when
the pose and the 3D point locations are refined during the non-linear minimization. If we
denote by Yi j a point of the neighborhood Ωi of Xi (Ωi is represented as the tangent plane
to Xi with ni its normal). The following term should be minimized:

∑
j∈Ωi

(
I1 (Kw(Yi j))−I2

(
K′w(TYi j)

))2 (3)

In general, the non-linear minimization is based on a first-order Taylor expansion of a
cost function (such as Gauss-Newton or Levenberg-Marquardt). Since the image function
has been introduced, the convexity assumption (needed by such minimization methods in
order to succeed) is very local for the term (3). The image patches obtained by projecting
the 3D neighborhood in the two images should project to the same physical object in order
to have a locally convex cost function. When using the pose resulting from the linear es-
timation and performing the 3D triangulation form the image points (pi,p′i), the distances
between measured points and their reprojected 3D points Xi can be too large (depending
on the inaccuracy of the point extraction). The table 1, which was obtained using simu-
lated data, confirms this argument. In presence of a bad initialization, the projection of
the neighbors in each image might give two patches that will not overlap the same area
of the observed scene. Consequently, for the second issue, we added a test based on the
geometric distance and based on the Normalized-Cross Correlation (NCC) between the



Figure 3: The Neighbors Yi j (in white) defined in 3D around triangulated point Xi (in
green), they are projected in the image to create Patchi and Patch′i as shown in left and
right pictures.

patches in order to ensure that the projected patches are close enough. Let us denote by
Patchi =

{
I1 (Kw(Yi j)) , j ∈ [1..m]

}
and by Patch′i =

{
I2 (Kw(TYi j)) , j ∈ [1..m]

}
,

with m the number of samples, the ordered sets of intensities obtained by projecting the
3D point Xi in the first and in the second image respectively. The image information
of the corresponding points pi and p′i will be considered when δi = 1 and will not be
considered when δi = 0 where:

δi =

 1 if &
{

d (pi,Kw(Xi)) < τ1 & d (p′i,K′w(TXi)) < τ1
NCC(Patchi,Patch′i) > τ2

0 otherwise
(4)

#Points/Noise 0.01 0.1 1.0 2.0
8 0.3619 3.9054 96.3384 179.4612
10 0.2066 1.9684 17.0605 24.6839
25 0.1002 1.0511 10.4050 18.5587
50 0.0660 0.6916 6.0568 14.0087

Table 1: Evolution of the mean residual error w.r.t. ground truth (in pixels) over 200 runs
after applying the 8-points algorithm and the optimal triangulation, w.r.t. the number of
points and the Gaussian noise.

Finally, for the last issue, since the geometric and photometric data are heteroge-
neous, they should be carefully integrated in a unified cost function. If we simply stack
them together, we will have a massive scale differences. In fact, intensity differences
could vary between [−255,255] (when the pixel intensity is coded in 8 bits) while ge-
ometric distances are expressed in pixels. In order to obtain a more uniform obser-
vation, we scale the geometric distance by the inverse of the variance of the vector[
(Kw(Xi)−pi)

> (K′w(TXi)−p′i)
>
]>

. We do the same for the photometric distance



with the vector
[
(I1 (Kw(Yi j))−I2 (K′w(TYi j)))

>
]>

. These scales are computed at
initialization. This will compensate not only for the difference of scale but also for the
difference of size (we have much more pixels than points coordinates). The scaling fac-
tors αg for the geometric term and αp for the photometric term will then be included in
the unified cost function.

3.2 Unified Cost Function
We take into account the issues explained above and we modify the cost function of
equation (2) to the following form:

argminXi,T αgDg (Xi,T)+αpDp (Xi,T) . (5)

In addition to the traditional geometric error term :

Dg = ∑
i

d (pi,Kw(Xi))
2 +d

(
p′i,K

′w(TXi)
)2

, (6)

a photometric error term has been added:

Dp = ∑
i

δi ∑
j

(
I1 (Kw(Yi j))−I2

(
K′w(TYi j)

))2
. (7)

In the next section, we provide some details of the implementation. The parameters
used in the simulation are presented in the experimental results section.

3.3 Implementation Details
The neighborhoods are defined as a regular grid around each 3D point Xi oriented ac-
cording to the given normal ni. Each neighborhood has a specific size, the edge length
si is calculated based upon an upper bound p of the edge length of a patch in the image,
as shown in algorithm (1) . The number of elements in the neighborhood can be adjusted
depending on the desired sampling.
Since the area of the neighborhood will not be updated during the minimization, the vari-

Algorithm 1 Compute the wanted edge length si of a 3D neighborhood, given a 3D points
Xi, its normal ni, a pose T and the maximum size of the patch d in the image in pixels
Require: Xi ,ni, T, d

si← 1; maxborder← d
repeat

si← si ∗d/maxborder
Create a neighborhood of size s in 3D of Xi and ni
Create Patch, Patch′ by projecting the neighborhood in both image
Compute sizeborder the distance between each corners of Patch
Compute size′border the distance between each corners of Patch′

maxborder←max
(
sizeborder,size′border

)
until |maxborder−d|> ε

ation of scale within the 3D structure must be limited in order to insure that a patch does
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Figure 4: Convergence rate in percent; the first graph shows results with an increasing
number of points and a Gaussian noise of 0.5; the second graph shows the effect of an
increasing distance from the scene with 50 points and a Gaussian noise of 0.5; the last
graph shows the results with 50 points and varying Gaussian noise from 0.01 to 2; it
shows that the additional intensity information enables our approach to be more robust
even with a fronto-parallel assumption (FP).

not become too small or too large within the image. This could happen if the structure’s
scale shrinks which would lead to an increase in the patch’s relative size in the image. In
order to prevent such behaviors, we force the norm of translation t to be always equal to
1. During the optimization, T and the 3D points Xi are modified with the increments ∆T
and ∆Xi given by the Gauss-Newton as follow:

T ← ∆TT
∀i, Xi ← X̂i+∆Xi

‖t‖
t ← t

‖t‖

(8)

This update will not modify the value of (6) because the geometric cost function is inde-
pendent of the scale.

4 Experiments and Results
The implementation of our method have been performed using Matlab. The algorithm is
a classic gauss-newton which stops after 50 iterations or when the error evolves less than
10−9. For initialization we used the normalized 8-point to get the pose and we obtain the
3D points using the optimal triangulation. For all the experiments, we used a maximum
patch edge length of 35 pixels and a neighborhood resolution (m) of 35× 35. For the
threshold introduced in (4) we used τ1 = 15, such a threshold will not make our method
dependent on the bad behavior of the Gold Standard since we can easily assume that it
brings the points Xi in such a threshold, and τ2 = 0.3 which is there only to guarantee
that the two patches are close enough to each other. We first discuss the experiments on
synthetic data and then on real images.

4.1 Synthetic Experiments
In order to generate the synthetic images we used a 3D pyramid with the top edge cut out
to create a flat area, the object used is pictured in Figure 3. All the faces were textured



Algo./Points 8 10 20 50
Gold Standard 0.3804 -5.8% 0.3515-2.6% 0.3137-2.6% 0.2281-1.7%
Our Method 0.2713-94.2% 0.2830-97.4% 0.2823-97.4% 0.2191-98.3%
Gold Standard 0.3764-14.5% 0.3515-5.6% 0.3133-2.6% 0.2281-3.3%
Our Method-FP 0.3283-85.5% 0.3122-94.4% 0.2944-97.4% 0.2248-96.7%
Algo./Noise 0.01 0.5 1.0 2.0
Gold Standard 0.0045-40.6% 0.2281-1.7% 0.4572- 1.7% 0.9688- 4.5%
Our Method 0.0045-59.4% 0.2191-98.3% 0.4010-98.3% 0.5998- 95.5%
Gold Standard 0.0045-47.5% 0.2281-3.3% 0.4571-2.3% 0.9714-6.0%
Our Method-FP 0.0045-52.5% 0.2248-96.7% 0.4185-97.3% 0.6631-94.0%

Table 2: Upper table: Comparison of the Gold Standard against our method, in presence
of a Gaussian noise (0.5) with increasing point pairs; Lower table: Comparison of the
Gold Standard against our method with 50 points in presence of a varying Gaussian noise;
the first value represents the mean residual w.r.t. ground truth, the percentage displays the
proportion by which a method out performs the other. It shows precision improvements
and repeatable performance with or without the FP assumption.

using real images. Harris corners were selected in the first image and transfered to the
second image using the true transformation T. This creates a set of true correspondences
with enough textured points. For each experiments we tested our method using the exact
normals and also using a fronto-parallel assumption (i.e. n = [0,0,1]>). We compare our
result to the one obtained with the Gold Standard.
We consider that an approach has converged when the resulting pose T reprojects the ex-
act 3D Points X in a range inferior to σ (the variance of the Gaussian noise) of correct
image points p′. For example with a gaussian noise of 0.5, if the residual is inferior to
0.5, it has converged. The numerical results of two different methods, as in table (2), are
compared only when the two approaches have converged.
The first experiment corresponds to 625 different poses with large variation of parameters,
using a Gaussian noise’s variance of 0.5. Figure 4(a) sustains that the additional informa-
tion represented by the difference of intensity avails a better convergence rate, especially
with a low number of points. Table 2 demonstrates that our approach performs better and
improves the precision with or without known normals.

We then test the behavior of our algorithm against increasing noise in the extracted
features. For each level of noise, we use 625 different poses and 50 points correspon-
dences. The result are summarized in figure 4(c) and table 2. When the noise level is
small our approach has the same convergence rate and precision as the Gold Standard .
When the noise increases the Gold Standard convergence rate falls faster than with our
methods.
The next batch of experiments targeted the stability with respect to the distance to the
scene. We used 50 points, a Gaussian noise of 0.5, and 625 poses for each depths. The
result in figure 4(b) shows again that our approach performs better than the Gold Standard
even with the fronto-parallel assumption.
Finally, experiments with presence of blur and noise in the image were conducted. It
has shown that the convergence rate of our approach was only affected when there were



Figure 5: Real experiments: the left hand graphics represents the corresponding pair of
points corrected using our method, the upper snapshot is the original keyframe; the right
hand images display the resulting augmentation displayed in a VRML viewer.

massive perturbations in the image intensities. The accuracy was naturally degraded by
the noise and blur. It should be noted that in the fronto-parallel approximation’s case the
performances were less affected than in the case where normal were known. This can be
explained by the fact that the influence of the approximations of the normal is larger than
noisy or blurry measure within the image.

4.2 Real Scenes Experiments
We tested our approach to obtain augmented images of an industrial compound. In order
to recover the 3D pose of the image, we used an image manually registered to the 3D
model. Using SIFT and a robust estimator we obtained a set of correct correspondences
as shown in 5. Then we applied our algorithm to these correspondences. We used the
fronto-parallel assumption during the non-linear estimation. Once the rotation, and the
translation are recovered the length of baseline is recovered manually. This shows one of
the possible application of our algorithm. It should be pointed out that the extractor of the
original SIFT (difference of Gaussian) might not give the best features for our algorithm
since it does not guarantee that the extracted point is locally well textured.



5 Conclusion
In this paper, we showed that merging geometric and photometric information in a unified
cost function at the final non-linear minimization for the relative pose estimation process
constraints better the results. As shown through the experiments on synthetic data, the
proposed method is valuable for anyone using the classical Gold Standard algorithm for
relative pose estimation since by simply modifying the cost function based reprojection
error by the one we propose, the results will be more precise. Our method has been
successfully applied to register image pairs with large baseline in order to superimpose
virtual augmentations.
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