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Abstract—Magnetic resonance fingerprinting (MRF) is a new quanti-
tative imaging paradigm, which simultaneously acquires multiple tissue
parameters in an efficient experiment. MRF can map several parameters
simultaneously including T1, T2, and spin density [2]. However, it is
important to underline that specific sequences may be better suited
for certain parameter ranges or sampling patterns. This work aims
to introduce a framework for pulse sequence optimization, individually
optimizing for T1 or T2 relaxation times. We demonstrate a new method,
including undersampled acquisitions, by simulating the MRI signal
encoding, gridding, and pattern recognition directly in the optimization.
The design framework could obtain efficient schedules for T1 and T2

acquisition.
Index Terms—Magnetic resonance imaging, MR fingerprint, Bayesian

Optimization

I. INTRODUCTION

MR fingerprinting is a novel approach for multi-parametric quan-
titative mapping in MRI. This method is based on a pseudorandom
acquisition scheme in the transient state, used to obtain unique signal
evolutions for different tissue properties. Using a pattern matching al-
gorithm with a precomputed dictionary of possible signal evolutions,
this technique allows to obtain multiple parametric maps within a
single acquisition. As this technique accurately models the physics
of the system, the correlation between the parameters is calculated
and eliminated from the estimate of the individual parametric maps.
However, the accuracy of each parametric map heavily relies on the
characteristics of the acquisition scheme. For example, when using
SSFP MRF, the accuracy of T2 maps depends critically on the length
of data acquisition and on the quality of stimulated echoes, while T1

accuracy crucially depends on the quality of the data from first two
seconds after the inversion pulse [4]. Here, we propose a framework
to individually optimize T1 and T2, including aliasing and noise
in our estimates. The goal of this sequence design framework was
to optimally select the varied sequence parameters (flip angles and
TRs) to maximize parameter sensitivity while maintaining the shortest
possible experiment duration.

II. METHODS

To perform our optimizations, we used a Bayesian Optimization
[3]. To work on a realistic dataset, we used a numerical brain phantom
to simulate single-channel MR fingerprint experiments, using T1, T2

and proton density map M0 from the Brainweb database [1] as the
ground truth. For a given acquisition scheme, the phantom values
were used to generate signal evolutions with the Extended Phase
Graph formalism [5]. Undersampling artefacts were simulated by
applying forward and inverse non-uniform Fourier transform, using
the same spiral trajectory as in [4]. Complex Gaussian noise with
a sigma of 0.02 was added to the signal evolution in the image
space. Finally, the simulated dataset was matched to a precomputed
dictionary of signal evolutions (in order to mimic an actual MRF
experiment) and the resulting parametric maps were compared to

ground truth values. In our dictionary 250 T1 and T2 values were
linearly spaced generated respectively from 200 to 2600ms and from
20 to 330ms.

Fig. 1: Flip angles and repetition times from [4]. Ground truth parameter maps
for the brain phantom [1]. Times in ms.

The single relative error in T1 or T2, averaged over the whole
brain avoiding background, was used as the cost function (norm of
the difference between maps). We optimized the acquisition method
to allow a better acquisition of T1 and T2 parameters individually. As
commonly used acquisitions are based on empirical schedules [4], to
avoid any bias we did not use any initialization.

We considered two ways of generating the function f consisting
of m excitations for flip angle or TR sequences:

• Method 1: It has been previously reported that slow-varying
periodic patterns are effective as flip angle functions [6]. We
used the first n = 4 coefficients from the Fourier transformation
of f to estimate a zero-padded the remaining m−n coefficients.
The parameters in input to our optimization model were: the
schedule length m, the n Fourier coefficients for TR and flip
angle respectively and an overall scaling factor for TR and flip
angle respectively.

• Method 2: Several MRF works have used Perlin noise [4].
To generate Perlin noise we generated normally distributed
random numbers and interpolated them with cos function. The
parameters in input to our optimization model were: the schedule
length m, the amplitude and the wave length of Perlin noise
signal, a seed for random generation and an overall scaling factor
for TR and flip angle respectively.

We compared the best T1 and T2 schedules between the two
methods and with the one in [4].



III. RESULTS

A global optimization with 70 iterations was computed in 180
minutes on an Intel R© Xeon R© processor E5-2600 v4.

Figure 2 shows the results from T2 optimization using Method 1
in terms of achieved schedules, accuracy of maps and convergence.
Our efficiency metric was 3.3568 in our method compared to 3.4984
in the benchmark method. Figure 3 shows the results from T1

optimization using Method 1 in terms of achieved schedules, accuracy
of maps and convergence. Our efficiency metric was 19.27 in our
method compared to 19.843 in the benchmark method. Figure 4
shows the results from T2 optimization using Method 2 in terms
of achieved schedules, accuracy of maps and convergence. Our
efficiency metric was 3.5465 in our method compared to 3.4984
in the benchmark method. Figure 5 shows the results from T1

optimization using Method 2 in terms of achieved schedules, accuracy
of maps and convergence. Our efficiency metric was 18.6137 in
our method compared to 19.843 in the benchmark method. For
T2 estimation, Method 1 performed better than Method 2. For T1

estimation, Method 2 performed better than Method 1, despite of a
larger number of acquisition frames.

Fig. 2: Flip angles, repetition times and convergence plot from optimization
Method 1. T2 ground thruth map, reconstructed T2 map from the undersam-
pled MR fingerprint experiments using the above acquisition parameter and
relative error maps.

Fig. 3: Flip angles, repetition times and convergence plot from optimization
Method 1. T1 ground thruth map, reconstructed T1 map from the undersam-
pled MR fingerprint experiments using the above acquisition parameter and
relative error maps.

IV. DISCUSSION

Our framework could obtain new MRF schedules in a reasonable
timeframe. Importantly, compared to previous literature, our approach
did not assume that the aliasing was noise-like, but we included both

Fig. 4: Flip angles, repetition times and convergence plot from optimization
Method 2. T2 ground thruth map, reconstructed T2 map from the undersam-
pled MR fingerprint experiments using the above acquisition parameter and
relative error maps.

Fig. 5: Flip angles, repetition times and convergence plot from optimization
Method 2. T1 ground thruth map, reconstructed T1 map from the undersam-
pled MR fingerprint experiments using the above acquisition parameter and
relative error maps.

aliasing and noise. Here, rather than optimizing the acquisitions for all
the physics modelled, we focussed on optimizing a single parameter
at a time. This could be useful in the future for regressing novel
acquisition strategies. Recently, a few different accounts have used
different methods for optimising schedules in MRF, and comparing
our method with others was beyond the scope of the current work.
In this work, we were limited to T1 and T2, but extensions of these
optimization methods can be performed including other parameters
such as T2∗, B0 and B1, perfusion diffusion or chemical shift. After
validation in-vivo, schedules here reported can be used for research
studies, with the promise of ultimately improving the efficiency of
quantitative MRI protocols.
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