
Features, Regions, Gestures: Components of a Generic
Gesture Recognition Engine

Florian Echtler, Gudrun Klinker
Technische Universität München

Institut für Informatik I16
{echtler|klinker}@in.tum.de

Andreas Butz
Ludwig-Maximilians-Universität München

LFE Medieninformatik
butz@ifi.lmu.de

ABSTRACT
In recent years, research in novel types of human-computer
interaction, for example multi-touch or tangible interfaces,
has increased considerably. Although a large number of inno-
vative applications have already been written based on these
new input methods, they often have significant deficiencies
from a developer’s point of view. Aspects such as config-
urability, portability and code reuse have been largely over-
looked. A prime example for these problems is the topic of
gesture recognition. Existing implementations are mostly tied
to a certain hardware platform, tightly integrated into user in-
terface libraries and monolithic, with hard coded gesture de-
scriptions. Developers are therefore time and again forced to
reimplement crucial application components.

To address these drawbacks, we propose a clean separation
between user interface and gesture recognition. In this pa-
per, we present a widely applicable, generic specification of
gestures which enables the implementation of a hardware-
independent standalone gesture recognition engine for multi-
touch and tangible interaction. The goal is to allow the devel-
oper to focus on the user interface itself instead of on internal
components of the application.

INTRODUCTION & RELATED WORK
More and more researchers and hobbyists have gained access
to novel user interfaces in the last few years. Examples in-
clude tangible input devices or multitouch surfaces. Conse-
quently, the number of applications being written for these
systems is increasing steadily.

However, from a developer’s point of view, most of these ap-
plications still have drawbacks. Core components such as ges-
ture recognition are usually integrated so tightly with the rest
of the application that they are nearly impossible to reuse in
a different context. Additionally, most applications were de-
signed to run on a single piece of hardware only. While this
approach probably suited the original developers best, it im-
pedes other persons who try to build on this work. In the
end, many applications for novel interactive devices are con-
sequently created from scratch, consuming valuable develop-
ment time.

For example, countless applications contain code which tries
to discover widely used multi-finger gestures for scaling and
rotation, these being prime candidates for a more general ap-
proach. Of course, limiting any kind of generic gesture recog-
nition to these few examples alone would not provide a great

advantage, as many more gestures exist which the developer
might want to include in an hypothetical interface.

Therefore, the first step in a general approach to gesture recog-
nition is to design a formal, extensible specification of ges-
tures. From an abstract point of view, the goal is to separate
the semantics of a gesture (the intent of the user) from its syn-
tax (the motions executed by the user).

While many graphical toolkits such as Qt, GTK+, Swing,
Aqua or the Windows User Interface API exist today, all of
them have originally been designed with common input de-
vices such as mouse and keyboard in mind. To some extent,
issues such as multi-point input, rotation independence or ges-
ture recognition are being addressed in recent versions or ex-
tensions of these toolkits. Examples include DiamondSpin
[8], the Microsoft Surface SDK or the support for multitouch
input in Windows 7 and MacOS X.

Nevertheless, all these libraries still do not provide any sep-
aration between the syntax and semantics of gestures. When
attempting to customize an application on a per-user basis or
adapt it to a different type of hardware, this still requires sig-
nificant changes to internal components of the library or ap-
plication itself.

Some attempts have already been made with respect to rec-
ognizing gestures in the input stream as opposed to simply
reacting to touch/release events. Several approaches based on
DiamondTouch have been presented by Wu et al. [11, 10].
A common aspect of these systems is that gesture recognition
still is performed inside the application itself. Some prelimi-
nary approaches to separate the recognition of gestures from
the end-user part of the application exist [6, 3]. With the ex-
ception of Sparsh-UI [5], these systems are not yet beyond
the design stage. Sparsh-UI also follows a layered approach
with a separate gesture server that is able to recognize some
fixed gestures for rotation, scaling etc. independently from the
end-user application. However, while being a step towards a
more abstracted view of gestures, the crucial aspect of gesture
customization has not yet been addressed.

A FORMAL SPECIFICATION OF GESTURES
Before discussing the details of our approach, some necessary
prerequisites need to be described first. We assume that the
raw input data which is generated by the input hardware has
already been transformed into an abstract representation such
as the popular TUIO protocol [7]. We also assume that the lo-

cation data delivered by this abstract protocol has been trans-
formed into a common reference frame, e.g., screen coordi-
nates. These assumptions should serve to hide any hardware-
related differences from the gesture recognizer. Below, we
will refer to data generated by the hardware as input events.
Usually, every input object (e.g., hand, finger or tangible ob-
ject) generates one input event for every frame of sensor data
in which it is present. More details on the layered software ar-
chitecture on which this approach is based can also be found
in [2].

The formal specification which we will describe here forms
the basis for a communications protocol. This protocol is
used by the application to specify screen areas and the ges-
tures which are to be recognized within them. Afterwards,
the gesture recognizer will use the same protocol to notify the
application when one of the previously specified gestures has
been triggered by the users’ motions.

Widgets and Event Handling
Before discussing the specification of gestures and events, we
will briefly examine how widgets and events are handled in
common mouse-based toolkits. Here, every widget which is
part of the user interface corresponds to a window. While this
term is mostly applied only to top-level application windows,
every tiny widget is associated with a window ID. In this con-
text, a window is simply a rectangular, axis-aligned area in
screen coordinates which is able to receive events and which
can be nested within another window. Due to this parent-child
relationship between windows, they are usually stored in a
tree.

Should a new mouse event occur at a specific location, this
tree is traversed starting from the root window which usually
spans the entire screen. Every window is checked whether it
contains the event’s location and whether its filters match the
event’s type. If both conditions are met, the check is repeated
for the children of this window until the most deeply nested
window is found which matches this event. The event is then
delivered to the event handler of this window. This process is
called event capture.

However, there are occasions where this window will not han-
dle the event. One such occasion is, e.g., a round button.
Events which are located inside the rectangular window, but
outside the circular button area itself should have been deliv-
ered to the parent instead. In this case, the button’s event han-
dler will reject the event, thereby triggering a process called
event bubbling. The event will now be successively delivered
to all parent windows, starting with the direct parent, until
one of them accepts and handles the event. Should the event
reach the root of the tree without having been accepted by any
window, it is discarded.

When we now compare this commonly used method to our
approach, one fundamental difference is apparent. Instead of
one single class of event, we are dealing with two semanti-
cally different kinds of events.

The first class is comprised of input events which describe raw

Region Region

Gesture Gesture GestureGesture

Feature Feature Feature Feature

"move" "tap" "rotate" "spin"

Motion BlobCount Rotation Scale

...

...

...

Figure 1. Relationship between regions, gestures and features

location data generated by the sensor hardware. These events
are in fact quite similar to common mouse events. However,
if we were to deliver these events directly to the widgets, no
interpretation of gestures would have happened yet. The wid-
get resp. the application front-end would have to analyze the
raw motion data itself, which is exactly what our approach is
trying to avoid.

In the gesture recognizer, these input events are therefore trans-
formed into a second event class, the gesture events which are
then delivered to the widgets. The existence of these two dif-
ferent event classes will influence some parts of the specifica-
tion which will be discussed in the following section.

Before we arrive at this discussion, the following question
should be asked: why are existing concepts such as widgets
and events used in this approach instead of a radically new
concept? This question is easily answered, as these existing
concepts have the significant advantage of being widely used
by a vast number of developers. As the primary goal of this
approach is to make it easier for developers to build an inter-
face based on novel input devices, building on established and
widely known practices is the reasonable choice.

Abstract Description of Gestures
As no artificial restrictions should be imposed on the devel-
oper as to which gestures are available, a generic and broadly
applicable way of describing them has to be found. To this
end, the three abstract concepts of features, regions and ges-
tures shall now be introduced. Their relationships are shown
in figure 1.

From an abstract point of view, regions are polygons in screen
coordinates. Each region corresponds to one GUI widget. A
region can contain an arbitrary number of gestures which are
only valid within the context of this region. Gestures can be
shared between regions and are then valid in all containing re-
gions. A gesture itself is composed of one or more features.
Features are simple, atomic properties of the input objects and
their motions which can in turn also be shared between ges-
tures. Each of these features can be specified in more detail
through constraints. Should all features of one gesture match
their respective constraints, the gesture itself is triggered and
delivered to its containing region.

At runtime, an application registers one or more regions with
the gesture recognition engine. Every region has an unique

identifier and can contain several gestures. The gesture rec-
ognizer receives input events from the hardware and continu-
ously tries to match them against the features in each gesture.
When such a match succeeds, a gesture event containing in-
formation about the matching input events will be delivered
back to the application.

Features
The basic building blocks of our formalism are features. Ev-
ery feature is a single, atomic property of all input events that
have been captured by a region. Examples for such proper-
ties are the average motion vector or the total number of input
objects. A feature can appear in one of two variants: as a fea-
ture template when it is sent to the gesture recognizer and as
a feature match when it is later sent back to the application.
Both variants never appear as standalone entities, but only as
components of a gesture.

By registering a gesture composed of one or more feature
templates, the application specifies what properties the input
events within the containing region must have in order to trig-
ger this gesture. When these conditions are later met, the ac-
tual values of these properties are sent back within the gesture
as feature matches.

A feature is described by a name, filters, optional constraint
values and a result value. The name describes the specific
kind of feature, i.e., which class is responsible for handling
the feature calculation. The filters are similar to those already
described for regions. For every type of input object, one fil-
ter is present. If this filter is set, input events of this type
are incorporated into the feature calculation. While the filter
settings on a region provide a first high-level selection that de-
termines which input events are captured at all, the filters on
each feature provide a more fine-granular control over which
input events are actually used for calculating this specific fea-
ture. Note that two features within a single gesture can filter
for different types of input objects each.

Depending on the class of feature, one or more constraint val-
ues can be given in a feature template that limit the value
which the feature itself is allowed to take. For example, a
feature with a single numerical result can have a lower and an
upper boundary value as constraints. Note that the constraints
always have the same type as the result value itself. After the
value of a feature has been calculated, it is checked against
the constraints values if they are present. Should the value of
the feature fall within the specified range, the feature template
changes into a feature match which has a valid result value.

Features can be divided into two groups: single-match and
multi-match. Single-match features have a single result value
for the entire region, such as the average motion vector. Multi-
match features, on the other hand, can have several result val-
ues, usually up to one result per object inside the region. Why
is this distinction necessary? As an example, consider a hypo-
thetical user interface which should display a tile that can be
moved by the user when touched and dragged. Additionally,
every single touch location on the tile should be highlighted to
provide additional visual feedback. For the motion informa-

tion, a gesture that contains a single-match feature providing
the average motion vector is sufficient. The individual motion
vectors are not needed. However, for displaying the touch lo-
cations, the individual coordinates have to be delivered. The
respective gesture has to contain a multi-match feature rep-
resenting the object locations. Should this region be moved
with, e.g. three fingers, every movement will trigger one mo-
tion gesture and three location gestures.

Conceptually, both types of features are used in exactly the
same way; the only difference is that a gesture which is com-
posed of multi-match features can be triggered several times
by a single set of input events. Note that while mixing single-
and multi-match features within a single gesture is possible,
this composition will rarely be used, as only one single result
will be produced.

1(4)

3(-)

6(4)

centroid

6(4)

motion vector

outline

ID (+ parent ID)

region

Figure 2. Sample input data for feature descriptions.

We will now briefly describe the currently available features.
Their generated result values will be described at the example
of figure 2. Note that only the two input objects within the
octagonal region can contribute to feature results; the topmost
input object moving outside the region will not be captured.

Single-Match Features

ObjectCount This feature counts the number of input events
within the current region. E.g., if the appropriate filters for
finger objects are set and the user touches the region with
four fingers, this feature will have a result value of 4. A
lower and upper boundary value can be set. In the example,
the result value will be 2.

Motion This feature simply averages all motion data which
has passed the filters and gives a relative motion vector as
its result. Two constraint vectors can be specified which de-
scribe an inner and outer bounding box for the result vector.
This can be used, e.g., to select only motions within a cer-
tain speed range or with a certain direction. In the example,
the resulting relative motion vector will be the average of
vectors 1 and 3 and point roughly to the upper left.

Rotation In this feature, the relative rotation of the input events
with respect to their starting position is calculated. This
feature itself is a superclass of two different kinds of sub-
features. The first subfeature, MultiObjectRotation, can
only generate meaningful results with two or more input

objects and extracts the average relative rotation with re-
spect to the centroid of all event locations. The second
subfeature, RelativeAxisRotation, requires only one input
object, but needs a sensor which is able to capture at least
the axes of the equivalent ellipse of the object. The average
relative rotation of the major axes of all input objects is ex-
tracted. In both cases, the result value is a relative rotation
in rad which can again be constrained by two boundary val-
ues that form lower and upper limit. In the example, both
variants will yield a result value close to zero, as neither
object rotation nor relative rotation are occurring.

Scale Similar to Rotation, this feature calculates the relative
change in size of the bounding box and has the correspond-
ing scaling factor as a result. This feature also has two
optional constraint values which serve as lower and upper
bound. In the example, the result value will be larger than
one, as the two input points within the region are moving
apart.

Path With this feature, a complex path such as the outline of
a letter can be recognized. The result is a value between
0 and 1 describing how well the predefined path matches
the actual motion. This feature handles constraints slightly
different than other features: it has an even number of con-
straint values which describe the predefined path as pairs
of x/y values in the range of [0; 1]. The starting point of
the path should be oriented at 0◦ relative to its centroid as
described by Wobbrock et al. [9]. This feature can be used
to implement shape-based gestures which cannot be reli-
ably recognized by the more basic properties of the input
events. Assuming a circular path, the result for the example
data will be again close to zero, as little similarity between
the straight paths and the constraint path exists.

Multi-Match Features

ObjectID The results of this feature are the IDs of all input
objects within the region that have passed the filters. Two
boundary values can again be specified to constrain the re-
sults to a smaller subset of IDs, e.g., to filter for specific tan-
gible objects with previously known IDs. In the example,
the two generated results will be ”1” and ”3”, respectively.

ObjectParent This feature is similar to ObjectID, but returns
the parent ID of each input object instead of the object IDs
themselves. To receive both IDs for all objects, this fea-
ture can be paired with ObjectID in a single gesture. This
particular feature requires the input hardware to detect a
parent-child relationship between certain objects, e.g. be-
tween finger contacts and the whole hand. In the example,
only a single result (”4”) will be generated from object 1,
as object 3 does not have a parent ID set.

ObjectPos The results of this feature are the positions vectors
of all input objects. This feature currently does not have
any additional constraints. In the example, the two results
are simply the screen positions of input objects 1 and 3.

ObjectDim This feature has a special result type called di-
mensions. This is similar to the shape descriptor used in

TUIO and gives an approximation for the outline and ori-
entation of an object through its equivalent ellipse. Two op-
tional dimension objects can be given as constraints, spec-
ifying upper and lower limits for each component of the
shape descriptor. This filter allows to select, e.g., only blobs
of a certain size and height/width ration. In the example,
the two result values will describe the approximate shape
and orientation of objects 1 and 3.

ObjectGroup This feature generates a match for each subset
of input objects which can be grouped together in a circle of
a specified radius. The result is a vector containing the cen-
troid of one group. Two constraint values can be given, with
the first component describing the minimum number of ob-
jects and the second component determining the radius of
the circle. If the radius has been chosen large enough, the
example will yield a single result which represents the av-
erage position of objects 1 and 3.

Regions
The primary task of regions is spatial filtering of input events.
As it is the case with any regular GUI, a gesture-based inter-
face can also be assumed to be divided into nested areas. In a
mouse-based UI, these areas are called windows as described
above. When moving to the presented, more general approach
to user interfaces, this concept needs to be extended. For ex-
ample, the fixed orientation and axis alignment is insufficient
when considering table-top interfaces, e.g., a round coffee ta-
ble.

Therefore, a region is defined as an area in screen coordinates
which has a unique identifier and is described by a closed,
non-intersecting polygon. Regions are managed in an ordered
list, with the first region in the list being the topmost region
on screen. This means that lower regions can be totally or
partially obscured by those on top.

B
A

regions widgets

(a) with rectangular regions

B
A

regions widgets

(b) with arbitrary regions

Figure 3. Overlapping widgets capturing input events

But why do regions need arbitrary shapes? Wouldn’t a sim-
ple rectangle still be sufficient? The answer to these ques-
tions is more complicated that it seems at first glance. Con-
sider two overlapping widgets as shown in figure 3(a). In a
standard toolkit, the input event which was erroneously cap-
tured by widget A could simply be ”bubbled” back to widget
B. However, in the presented architecture, the input events
are converted to gesture events before being delivered to the

widgets. The two input events would merge into one ges-
ture event which cannot be split back into the original input
events. Where should this single event now be directed to?
The solution is therefore to ensure that input events are al-
ways assigned to the correct widget in the first place. The
most straightforward way to achieve this goal is to allow re-
gions of arbitrary shape which can closely match the shape of
the corresponding widget as shown in 3(b).

Besides their arbitrary shape, regions can also further select
input events based on their object type. The available object
types depend on the sensor hardware and can comprise classes
such as finger, hand, tangible and others. This behaviour is
realized through a number of filters, one for each object type.
When one of these filters is active, the region is sensitive to to
input events from this object type. If the filter is disabled, the
region is transparent to this type of input event. Several filters
can be active at the same time.

At runtime, the input events described in the previous section
are checked against all regions, starting from the top of the
stack. When the object’s centroid falls inside the region and
the filter for the corresponding object type is active, this input
event is captured by the region and stored for subsequent con-
version into gesture events. Otherwise, regions further down
are checked until a match is found. When no match occurs,
the input event is finally discarded. Although the presented
method deliberately uses a point-based approach to allow for
a larger variety of input devices, an extension towards match-
ing against outlines or shapes which are generated by optical
sensors can be envisioned.

Gestures
The final and most central element of our formalism are ges-
tures. An arbitrary number of gestures can be attached to ev-
ery region. These gestures can either be created from scratch
or taken from a list of predefined default gestures.

At runtime, these gestures can then be triggered by the in-
put events which have been captured by the containing re-
gion. Should the conditions for one or more specific gestures
match, an event describing the gesture is delivered to the con-
taining region and therefore to the widget whose outline is
described by the region. A gesture is composed of a unique
name, a number of flags and one or more features. The name
can either be an arbitrary descriptor chosen by the developer
for custom gestures, or one of a list of predefined ”common”
gesture names. In the latter case, no features need to be spec-
ified, as these are part of the existing definition. Should the
gesture contain one or more feature templates, it acts as a ges-
ture template which describes an event to be triggered under
certain conditions. Once these conditions have been met, a
gesture match containing the corresponding feature matches
is created based on the template.

Additionally, two flags can be set to further differentiate the
behaviour of the gesture. When the gesture is marked as one-
shot, it will only be sent once for a specific set of input ob-
jects. For example, consider a ”press” gesture which is to be
triggered when the user touches a region. The correspond-

ing event should only be delivered once after the first input
event has occurred, not subsequently while the user continues
to touch the region. In this case, setting the one-shot flag will
ensure the desired behaviour.

The gesture can also be marked as default. Should such a
gesture be received, its name and features will be added to
the list of standard gestures which can be accessed using only
their name. This allows applications to register their own cus-
tom gestures for reuse among several widgets or to overwrite
the definitions of the standard gestures given below.

Currently, 5 predefined standard gestures are available which
have been selected based on the most common usage scenar-
ios for interactive surfaces. A similar set of gestures has al-
ready been used in 1995 by Fitzmaurice et al. [4]. These
gestures and their semantics are as follows:

press - triggered once when a new input object appears within
the region

release - triggered once when all input objects have left the
region

move - sent continuously while the user moves the region

rotate - sent continuously while the user rotates the region

scale - sent continuously while the user scales the region

Note that the actual features which comprise these gestures
are not given here. The reason is that these features may dif-
fer significantly depending on the sensor. For example, on a
camera-based touchscreen, rotation can be achieved by turn-
ing a single finger, whereas a capacitive sensor will require at
least two fingers rotating relative to each other. However, this
is irrelevant for the semantics of the resulting gesture - the
intention of the user stays the same. Therefore, the compo-
sition of these default gestures can be redefined dynamically
depending on the hardware used.

Examples
To give a better understanding of how these concepts work,
the decomposition of some gestures into features shall now
be discussed. The five standard gestures mentioned earlier
can easily be mapped to a single feature each, e.g., the ”re-
lease” gesture consists of an ObjectCount feature with both
lower and upper constraint set to zero. As the one-shot prop-
erty of the gesture is also set, this results in a single event as
soon as the object count (e.g., finger contacts inside the re-
gion) reaches zero.

Another important mapping is that of the ”move”, ”rotate”
and ”scale” gestures which contain a single Motion, Rotation
and Scale feature, respectively. Note that a freely movable
widget which uses all three gestures will behave exactly as
expected, even though the raw motion data is split into three
different entities. Consider, for example, rotating such a wid-
get by keeping one finger fixed at one corner and moving the
opposing corner with a second finger. In this case, the widget
rotates around the fixed finger, thereby seemingly contradict-
ing the definition of the Rotation feature which delivers rota-

tion data relative to the centroid of the input events. However,
as the centroid of the input events itself also moves, the result-
ing motion events will modify the widget’s location to arrive
at the expected final position.

While a large number of interactions can already be mod-
eled through single features and carefully selected constraints,
combining several different features significantly extends the
coverage of the ”gesture space”. For example, a user inter-
face might provide a special gesture which is only triggered
when the users quickly swipes five fingers across the screen.
This can easily be described by the combination of an Ob-
jectCount feature with a lower boundary of five and a Motion
feature with a lower boundary equal to the desired minimum
speed.

A different example would be to create gestures which can
only be triggered by one specific tangible object. Of course,
the input hardware has to be able to identify objects based
on, e.g., fiducial markers. Should this be the case, any of the
previously described gestures can be extended by adding one
ObjectID feature which filters for the particular object ID.

Another powerful application for the conceptual split between
gestures and features becomes apparent when considering in-
put devices with different sensing capabilities. As mentioned
earlier, optical touchscreens are usually able to detect the ro-
tation of a single physical object on the surface. Therefore,
the RelativeAxisRotation feature can be used in the ”rotate”
gesture to deliver relative rotation events. In contrast, a ca-
pacitive touchscreen will only be able to deliver simple loca-
tion points without orientation, thereby requiring the use of at
least two objects (usually fingers) to trigger rotation. In this
case, the ”rotate” gesture can now contain a MultiBlobRota-
tion feature which will extract relative rotation data from two
or more moving input points.

As both these features are derived from the common ancestor
Rotation, this switch can be done completely transparent to
the application, even at runtime.

SUMMARY & OUTLOOK
In this paper, we have presented a highly generic formalism
for describing gestures to a recognition engine which analyzes
raw motion data. The term ”gesture” is used very loosely to
describe any motion(s) by the user which are executed with
a certain intent. Gestures can be attached to arbitrary screen
regions which usually correspond to widgets in the user inter-
face.

As each gesture is itself composed of one or more feature de-
scriptors, the actual motions which trigger a certain event can
be finely tuned. Particularly, predefined events can be adapted
to a particular piece of input hardware without any changes to
the application, as the semantics of the gesture remain un-
changed - just the feature objects representing the syntax have
to be modified.

We have implemented a recognition engine based on these
concepts in pure C++ and have successfully used it with var-

ious user interfaces based on Java/Swing or C++/OpenGL.
Due to its portable implementation, this gesture recognizer
can be coupled with a wide variety of end-user applications,
regardless of the environment they are written in. The recog-
nition engine and the surrounding framework have been re-
leased as open source [1].

Of course, the value of this system is directly dependent on
the number and flexibility of the features based on which ges-
tures can be recognized. Should applications emerge where
the existing features are insufficient, the current implementa-
tion will have to be extended. We will continue to create and
evaluate various kinds of user interfaces with this approach.

REFERENCES
1. F. Echtler. libTISCH: Library for Tangible Interactive

Surfaces for Collaboration between Humans.
http://tisch.sourceforge.net/, accessed
2010-01-04.

2. F. Echtler and G. Klinker. A multitouch software
architecture. In Proc. NordiCHI ’08, pages 463–466,
Oct. 2008.

3. J. Elias, W. Westerman, and M. Haggerty. Multi-touch
gesture dictionary. United States Patent 20070177803,
2007.

4. G. Fitzmaurice, H. Ishii, and W. Buxton. Bricks: laying
the foundations for graspable user interfaces. In Proc.
CHI ’95, pages 442–449. ACM Press/Addison-Wesley
Publishing Co. New York, NY, USA, 1995.

5. S. Gilbert et al. SparshUI Toolkit.
http://code.google.com/p/sparsh-ui/,
accessed 2009-07-06.

6. X. Heng, S. Lao, H. Lee, and A. Smeaton. A touch
interaction model for tabletops and PDAs. In Proc. PPD
’08, 2008.

7. M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. TUIO: A protocol for table-top tangible
user interfaces. In Proc. Gesture Workshop ’05, 2005.

8. C. Shen, F. Vernier, C. Forlines, and M. Ringel.
DiamondSpin: an extensible toolkit for around-the-table
interaction. In Proc. CHI ’04, pages 167–174, 2004.

9. J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures
without libraries, toolkits or training: a $1 recognizer for
user interface prototypes. In Proc. UIST ’07, pages
159–168, 2007.

10. M. Wu and R. Balakrishnan. Multi-finger and whole
hand gestural interaction techniques for multi-user
tabletop displays. In Proc. UIST ’03, pages 193–202,
2003.

11. M. Wu, C. Shen, K. Ryall, C. Forlines, and
R. Balakrishnan. Gesture registration, relaxation, and
reuse for multi-point direct-touch surfaces. In Proc.
Tabletop ’06, pages 185–192, 2006.

http://tisch.sourceforge.net/
http://code.google.com/p/sparsh-ui/

	Introduction & Related Work
	A Formal Specification of Gestures
	Widgets and Event Handling
	Abstract Description of Gestures
	Features
	Regions
	Gestures

	Examples

	Summary & Outlook
	REFERENCES

