
A Multitouch Software Architecture

Florian Echtler and Gudrun Klinker
Technische Universität München

Institut für Informatik
Boltzmannstr. 3

D-85747 Garching, Germany
{echtler,klinker}@in.tum.de

ABSTRACT
In recent years, a large amount of software for multitouch interfaces
with various degrees of similarity has been written. In order to
improve interoperability, we aim to identify the common traits of
these systems and present a layered software architecture which
abstracts these similarities by defining common interfaces between
successive layers. This provides developers with a unified view of
the various types of multitouch hardware. Moreover, the layered
architecture allows easy integration of existing software, as several
alternative implementations for each layer can co-exist. Finally,
we present our implementation of this architecture, consisting of
hardware abstraction, calibration, event interpretation and widget
layers.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User Interfaces—
Graphical user interfaces

General Terms
Design, Standardization

Keywords
multitouch, framework, architecture, widgets

1. INTRODUCTION
Research in multitouch interfaces has increased significantly in the
last years. For the most part, this is due to the emergence of mul-
titouch hardware which can easily be built from off-the-shelf com-
ponents. Consequently as more researchers have access to such
hardware, the amount of software written to support these systems
is growing speedily.

So far, however, most of this software is specific to the one single
system it was written for. Therefore interoperability is almost non-
existent at the moment. In this paper, we present our work to create
an architecture which encompasses most of the common traits be-
tween these systems. Our goal is to provide two advantages over
existing software - first, to enable developers to use a high-level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. NordiCHI 2008: Using Bridges, 18-22 October,
Lund, Sweden. Copyright 2008 ACM ISBN 978-1-59593-704-9. $5.00

API for the creation of multitouch-enabled software, second, to al-
low existing software to be used across hardware boundaries with
the least change possible.

2. RELATED WORK
The significant amount of software which supports multitouch in-
terfaces can roughly be divided into two groups, which are low-
level input processing tools and high-level interaction software.

In the first group, an example is the system presented by Han [9],
which has helped start the current wave of multitouch research. It
describes a back-end software which provides image processing for
the data from the FTIR (frustrated total internal reflection) screen
and transmits the extracted touch spots to end applications.
One other widely used example is touchlib [18]. This library pro-
vides a simple configurable image capture and processing system
which is geared towards blob extraction. This library is designed to
be linked directly into applications. It also supplies a tool to trans-
mit extracted data over the network to other applications.
Another well-known software is reacTIVision [12]. Its main focus
is on tracking of fiducial markers, but it also provides support for
finger touch points. Data is also transmitted over a network con-
nection.
One example for the host of other systems which use their own
internal image processing is the Soundscape Renderer [1]. A Java-
based solution extracts touch points from the image and sends them
to the application.
The protocol in which many of these programs exchange touch data
is the OSC-based TUIO [19, 14] format. Although TUIO has been
designed with tracking of tangible objects in mind, it has become
a de-facto standard for multitouch data. An updated version of the
specification can be found in [13].

The second group of software aims to support higher-level inter-
action. Interestingly, many of these programs are based on the
well-known DiamondTouch [3] interactive surface. One example
is DiamondSpin [16], a Java-based toolkit which allows continuous
rotation of windows and control from multiple touch points. An-
other variant is DTFlash [7], which focuses on adding multitouch
support to the Macromedia Flash authoring suite. A .NET-based
toolkit also exists [2]. One common trait of these systems is that
they try to extend existing widgets or widget sets with multitouch
support.
Other toolkits which support multitouch input through TUIO are
vvvv [17], Processing [8] and others based thereon [15]. These fo-
cus on a easy, Java-like programming language or, in the case of
vvvv, visual programming.
Another approach, which is not directly related to multitouch, but

should be mentioned nevertheless, is followed by MPX [11] (Multi-
Pointer X). This is an extension of the well-know X server environ-
ment to support dynamic generation and control of multiple point-
ers, which can then be used to control mouse-based applications.

A different aspect of higher-level interaction support is provided
by software which tries to recognize gestures in the input stream
as opposed to simply reacting to touch/release events. Several ap-
proaches based on DiamondTouch have been presented by Wu et
al. [21, 20]. A common aspect of these systems is that gesture
recognition is performed inside the application itself.
Finally, there are approaches to separate the recognition of gestures
from the end-user part of the application [10, 5]. However, these
systems are not yet beyond the design stage. In designing such a
library of gestures, the work of Epps [6] et al., in which the most
intuitive use of hands for a variety of common tasks was evaluated,
should also be considered.
Despite this large body of work, there do not seem to be any efforts
to combine them into a general architecture yet.

3. A MULTITOUCH SOFTWARE ARCHI-
TECTURE

When looking at the significant body of related work in terms of
multitouch software support, some similarities emerge. Many of
these systems are split into an input processing and an application
part, connected by a network link. There are several approaches
to add multitouch support to existing toolkits and widget sets. Al-
though approaches to generalize gesture recognition exist, most ap-
plications perform this internally in an ad-hoc manner.

Observing these common traits, we conclude that a generic multi-
touch framework should be able to provide a link between different
input hardware on the one hand as well as different graphical toolk-
its on the other hand. Additionally, it should perform tasks which
are independent of these two parts, such as calibration and gesture
recognition.

Based on these observations, we shall now present the general lay-
out of our framework. A high-level overview is given in Figure
1.

The lowest layer is formed by the input hardware, which generates
raw tracking data in the form of, e.g., a video stream or electri-
cal field measurements. This information is then processed by the
hardware abstraction layer. Its task is to generate a stream of posi-
tions of fingers, hands and/or objects from the raw data, depending
on the abilities of the hardware. As the positions are still in device
(e.g., image) coordinates at this point, the next layer is the trans-
formation layer, which transforms the position data from device to
screen coordinates. This is achieved, e.g., with a perspective trans-
formation which is obtained in a calibration procedure. Note that
this does not exclude more complex setups, like 3D trackers and
curved screens, as long as a suitable mapping into screen coordi-
nates can be found.
At this point, the position data is ready for interpretation. The in-
terpretation layer translates the movements of hands and fingers
into gestures, thereby assigning a meaning to pure motion. To do
so, this layer needs knowledge about regions on the screen. For
each region, a list of gestures to match is maintained. When the
correct events occur within a region, the corresponding gesture is
triggered and passed to the next layer. As the mapping from motion
to meaning can be expected to change for different input devices, a
capability description has to be supplied which provides this map-

Figure 1: Architecture overview.

ping. This final part of our framework is the widget layer. Its task
is to register and update regions of interest with the interpretation
layer and then act on recognized gestures by generating visible out-
put.

3.1 Hardware Abstraction Layer
This layer takes raw input data from the underlying hardware. The
data is then searched for finger, hand and/or object positions, which
are then transmitted to the next layer. Although TUIO is widely
used in similar applications, we have chosen a clear-text format
instead due to easier debugging. However, to provide compatibil-
ity with the various programs mentioned above, the contained data
is quite similar to TUIO. A conversion filter is therefore trivial to
write. This extends to non-optical input systems like Diamond-
Touch as well, as long as an adapter is available which provides
compatible network output. If no multitouch hardware is present,
even ordinary computer mice could be used to generate input data.

3.2 Transformation Layer
Especially with camera based systems, a transformation has to be
performed on the low-level data, which is still in image or other
device coordinates. Depending on the type of sensor used, a simple
scaling or a perspective transformation may be necessary. In optical
sensing systems which use a camera with a wide-angle lens, a radial
undistortion step also has to be performed. All these calculations,
as well as the prior estimation of the calibration parameters, are the
task of the transformation layer. To account for existing tools which

already contain a calibration system, this layer should be built as a
filter for network data that only needs to be inserted if the hardware
abstraction layer does not already provide calibrated data.

3.3 Interpretation Layer
The interpretation layer receives calibrated data packets from the
lower layers and uses this motion data to generate gesture events
for the next layer.

In this context, three different entities are important: regions, events
and features.

• Regions. A region is a polygonal area, given in screen coor-
dinates, in which a certain set of events will be matched. Re-
gions whose extent will never change after initial registration
can be flagged as static for optimization purposes. Regions
can partially or totally occlude each other. They are therefore
ordered from front to back, with the foremost regions having
the highest priority. Regions can be seen as a generalization
of the window concept which is used in all common GUIs.

• Events. An event is always registered for a region, and if
specific conditions within that region are met, the associated
event is triggered. An event can be flagged as sticky, mean-
ing that it will continue to be active even if the actions which
triggered it in the first place move outside the original region.
The metaphor used here is that the event ”sticks” to the re-
gion, similar to the ”pointer grab” which is available in most
windowing systems.

• Features. A feature is an easily obtainable, atomic property
of user input, such as the number of touch points inside a
region, the average distance between them or their average
motion vector. An event specification is composed from one
or more features with optional conditions. If all conditions
of all features are met for a certain input configuration, the
respective event is triggered.

These three entities are registered with the interpretation layer at
the start of the application and triggered by the former or updated
by the latter. An application first registers a region along with a
unique identifier. A region is defined by a closed polygon, given
in screen coordinates. Events can then be registered for this region.
Using the identifier, the corresponding entity can also be updated or
removed. Upon request from the interpretation layer, an application
is required to send an update of the current region polygon, in case
the corresponding UI element has moved. Along with sticky events,
this prevents continuous updating of regions that would degrade
performance. Instead, the interpretation layer only has to request
an update when new input data arrives that is not yet assigned to a
sticky event.

When an event is specified, a name from a list of predefined events
can be used (e.g., ”move”, ’tap” etc.). As the mapping from fea-
tures to events is dependent on the capabilities of the hardware,
a description file should be provided for each type of input hard-
ware which describes the predefined events and their corresponding
features. Additionally, it is possible to specify the list of features
which comprise the event instead, along with a name. If the name is
equal to one of the predefined names, the newly provided features
will be used instead. Otherwise, a new gesture is registered and
made available for the application to use. This allows applications

to define new gestures and receive events that are not yet part of the
capability description of the default events.

By way of an example, consider the ”move” event mentioned above.
As the main property of such an event is the motion vector, a single
feature which comprises the position difference between the input
position at the start of interaction and the current position is suf-
ficient. If small motions should be filtered out, a condition such
as a minimum vector length can be added. Upon reception of in-
put data, the motion feature is calculated for every region which
contains input positions. If the condition is present and fulfilled, a
”move” event is triggered for the respective region.

3.4 Widget Layer
As mentioned previously, the widget layer has the task of generat-
ing visible output for the user. It receives events from and registers
regions with the interpretation layer. As both of these actions are of
a very basic nature, this behavior should be easy to integrate with
existing toolkits or widget sets. As regions are ordered, the widget
layer just has to register a series of bounding polygons in the same
sequence as the stacking order of the graphical widgets.

4. IMPLEMENTATION
So far, we only presented considerations of theoretical nature. To
evaluate them in a practical context, we built an example imple-
mentation of all four layers. In our previous paper [4], we already
have presented an example for the hardware abstraction and trans-
formation layers. In addition to the capabilities of similar programs
mentioned above, it offers the ability to track fingers, hands and ob-
jects simultaneously through use of a secondary light source. How-
ever, it should be emphasized that any tracking software which is
able to provide compatible data (e.g., TUIO through a converter)
is to be usable with our framework. We have also built working
prototype implementations for the interpretation and widget layers.
All parts of our implementation are based on C++ and OpenGL.
We have chosen these languages as they provide the best balance
between performance, cross-platform availability and rich graphi-
cal capabilities.
As a test case, we are currently building several applications based
on our framework. By analyzing their requirements, we are re-
fining the key components of the architecture, especially the event
specification.

As the usability and success of any such framework depend on
usage and feedback by developers, we are planning to distribute
the code under an open-source license to a wider audience. A
pre-release version is currently available on Sourceforge.net (see
http://tisch.sf.net/).

5. DISCUSSION
In terms of interoperability with other software, special consider-
ations apply with respect to MPX [11]. MPX, which offers the
ability to control several mouse pointers at once, can be integrated
into our framework in two ways. As a back-end, an adapter which
converts X pointer events into data packets can be used to attach
the two upper layers of our architecture to MPX. As a front-end, an
adapter which works the other way round, converting data packets
into pointer events, enables MPX to control legacy pointer-based
applications with direct-touch hardware. We already developed a
software which does the second type of conversion and will also
build an adapter of the first type.

http://tisch.sf.net/

One important topic which should not be neglected is latency. As
all layers in the current implementation communicate with each
other by means of UDP packets, network latency should not be
underestimated. We have therefore measured the latency of the
hardware-independent upper layers (interpretation and widget layer)
by means of a mouse-driven interaction. A small tool captures
timestamped mouse events and converts them into data packets
which are then inserted into the interpretation layer. A second
timestamp is taken after the recognized event has been delivered
to and processed by the widget layer. The difference then provides
a rough estimate of the additional latency introduced by the two up-
per layers. We have taken 100 samples on a standard laptop com-
puter running at 2 GHz, which resulted in an average measured la-
tency of 2.35 ms with a standard deviation of 0.26 ms. This seems
to be an acceptable additional latency, especially when taking the
latency of the lower layers into account. For example, a camera-
based sensing hardware, even if running at 60 Hz, already has an
absolute minimum latency of 16.67 ms. Of course, any additional
latency should therefore be kept as low as possible.

Finally, we shall examine two use cases and how they can be per-
formed using our framework.

• Use Case 1: add support for novel input device. This use
case can be separated into two subtasks. First, an adapter has
to be written which converts the raw input data into compat-
ible network packets in screen coordinates. Second, a new
description file for the interpretation layer has to be created
which specifies the mapping from input features (motion,
distance, ...) to standard events.

• Use Case 2: create device-independent multitouch applica-
tion. First, a suitable widget layer implementation has to
be chosen and, if necessary, extended with additional widget
classes for the tasks at hand. If the default events registered
by the original widget classes are sufficient for the desired
types of interaction, no further steps are needed. Otherwise,
an event specification for any additional event has to be reg-
istered by the relevant widgets.

6. CONCLUSION AND FUTURE WORK
We have presented a software architecture which aims to encom-
pass the major common traits of existing multitouch software. To
examine this architecture in a real-world context, we have built a
framework based on this architecture and developed several appli-
cations as test cases. By distributing the code under an open-source
license, we hope to foster use of our framework by other developers
to gain valuable feedback. We are also examining which gestures
might comprise a standard library that should be available per de-
fault.

Moreover, we are working on alternative implementations for the
top and bottom layers. These include hardware abstraction lay-
ers for other kinds of input hardware, e.g., combined optical and
acoustic tracking. We are also looking into the adaption of existing
toolkits, like Qt, as a widget layer.

In conclusion, we believe that our architecture offers a compre-
hensive way to integrate different kinds of multitouch and direct-
interaction devices as well as different toolkits into a well-structured
framework.

7. REFERENCES
[1] K. Bredies, N. Mann, J. Ahrens, M. Geier, S. Spors, and

M. Nischt. The multi-touch soundscape renderer. In Proc.
AVI ’08, pages 466–469, 2008.

[2] R. Diaz-Marino, E. Tse, and S. Greenberg. Programming for
multiple touches and multiple users: A toolkit for the
DiamondTouch hardware. In UIST ’03 companion
proceedings, 2003.

[3] P. Dietz and D. Leigh. DiamondTouch: a multi-user touch
technology. In Proc. UIST ’01, pages 219–226, 2001.

[4] F. Echtler, M. Huber, and G. Klinker. Shadow tracking on
multi-touch tables. In Proc. AVI ’08, pages 388–391, 2008.

[5] J. Elias, W. Westerman, and M. Haggerty. Multi-touch
gesture dictionary. United States Patent 20070177803, 2007.

[6] J. Epps, S. Lichman, and M. Wu. A study of hand shape use
in tabletop gesture interaction. In CHI ’06 extended
abstracts, pages 748–753, 2006.

[7] A. Esenther and K. Wittenburg. Multi-user multi-touch
games on DiamondTouch with the DTFlash toolkit. In Proc.
INTETAIN ’05, 2005.

[8] B. Fry and C. Reas. Processing.
http://processing.org/.

[9] J. Han. Low-cost multi-touch sensing through frustrated total
internal reflection. In Proc. UIST ’05, pages 115–118, 2005.

[10] X. Heng, S. Lao, H. Lee, and A. Smeaton. A touch
interaction model for tabletops and PDAs. In Proc. PPD ’08,
2008.

[11] P. Hutterer. MPX - The Multi-Pointer X server.
http://wearables.unisa.edu.au/mpx/.

[12] M. Kaltenbrunner and R. Bencina. reacTIVision: a
computer-vision framework for table-based tangible
interaction. In Proc. TEI ’07, pages 69–74, 2007.

[13] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. reactable TUIO Protocol Specification.
http://reactable.iua.upf.edu/?tuio.

[14] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. TUIO: A protocol for table-top tangible user
interfaces. In Proceedings of Gesture Workshop 2005, 2005.

[15] H.-H. Lin and T.-W. Chang. A camera-based multi-touch
interface builder for designers. In Human-Computer
Interaction. HCI Applications and Services, 2007.

[16] C. Shen, F. Vernier, C. Forlines, and M. Ringel.
DiamondSpin: an extensible toolkit for around-the-table
interaction. In Proc. CHI ’04, pages 167–174, 2004.

[17] vvvv Group. vvvv: a multipurpose toolkit.
http://vvvv.org/.

[18] White Noise Audio. Touchlib.
http://www.nuigroup.com/touchlib/.

[19] M. Wright. The Open Sound Control 1.0 Specification.
http://opensoundcontrol.org/spec-1_0.

[20] M. Wu and R. Balakrishnan. Multi-finger and whole hand
gestural interaction techniques for multi-user tabletop
displays. In Proc. UIST ’03, pages 193–202, 2003.

[21] M. Wu, C. Shen, K. Ryall, C. Forlines, and R. Balakrishnan.
Gesture registration, relaxation, and reuse for multi-point
direct-touch surfaces. In Proc. TABLETOP ’06, pages
185–192, 2006.

http://processing.org/
http://wearables.unisa.edu.au/mpx/
http://reactable.iua.upf.edu/?tuio
http://vvvv.org/
http://www.nuigroup.com/touchlib/
http://opensoundcontrol.org/spec-1_0

	INTRODUCTION
	RELATED WORK
	A MULTITOUCH SOFTWARE ARCHITECTURE
	Hardware Abstraction Layer
	Transformation Layer
	Interpretation Layer
	Widget Layer

	IMPLEMENTATION
	DISCUSSION
	CONCLUSION AND FUTURE WORK
	References

