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Abstract

Object detection and localization is a crucial step for
inspection and manipulation tasks in robotic and indus-
trial applications. We present an object detection and lo-
calization scheme for 3D objects that combines intensity
and depth data. A novel multimodal, scale- and rotation-
invariant feature is used to simultaneously describe the ob-
ject’s silhouette and surface appearance. The object’s posi-
tion is determined by matching scene and model features via
a Hough-like local voting scheme. The proposed method is
quantitatively and qualitatively evaluated on a large num-
ber of real sequences, proving that it is generic and highly
robust to occlusions and clutter. Comparisons with state of
the art methods demonstrate comparable results and higher
robustness with respect to occlusions.

1. Introduction

Detection and localization of 3D objects is a crucial part
in many machine vision systems. It is also a fundamental
step for subsequent inspection and manipulation tasks. Re-
cent methods [6, 23, 15, 2, 19] that localize objects in range
data provide excellent results and can cope with moderate
clutter and occlusions. However, they are often sensitive
to the occlusion of key regions of the object [19, 2, 23]
and have problems detecting objects which are planar, self-
similar or similar to background clutter [6, 15]. Object de-
tectors based on template matching that use both intensity
and range data [9] have proven to be very fast and highly ro-
bust in the presence of clutter, but are sensitive to occlusion
and do not recover the full pose of the object.

The use of edges for object detection in intensity images
has a long tradition and have proven to be a powerful feature
in object detection [17, 8, 20, 10]. By contrast, remarkably
little work [21, 19, 11] has been published on using edges
or depth discontinuities in range images for such tasks. This
is probably due to a number of challenges which are unique
to 3D edges, most notably because the range sensors tend
to fail exactly at or around the edges. Triangulating recon-

Figure 1. Example localizations for our method for highly clut-
tered scenes, multiple instances of texture-less objects in arbitrary
poses, planar objects and high amounts of occlusion (best viewed
in color).

struction methods, such as stereo or structured light, suffer
from local occlusion around such edge points. Other meth-
ods, such es time-of-flight, tend to smooth over edges and
introduce veil points, i.e., points at 3D positions that do not
correspond to any real 3D points in the scene. Such effects
make it difficult to detect and accurately localize geomet-
ric edges and to measure their direction from range images
alone. By contrast, edges in intensity images can be de-
tected and measured precisely, but it is generally not possi-
ble to distinguish between texture and geometric edges.

We propose a method that combines the accuracy of the
intensity edges with the expressiveness of range informa-
tion. For this, edges are extracted from the intensity image
and filtered using the range image to obtain accurate geo-
metric edges. Those geometric edges are combined with the
3D data from the range image to form a novel multimodal
feature descriptor that combines intensity and range infor-
mation in a scale and rotation invariant way. The object’s
appearance from different viewpoints is described in terms
of those features, which are stored in a model database. This
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model database allows efficient access to similar features
and captures the overall appearance of the object. In the on-
line phase, the multimodal features are extracted from the
scene and matched against the model database. An efficient
local voting scheme is used to group those matches and find
the pose that simultaneously maximizes the overlap of the
object’s silhouette to the detected geometric edges as well
as the overlap of the model surface and the 3D surface of
the scene. The resulting pose candidates are filtered using
clustering and non-maximum suppression, and the final re-
sult is refined using iterative closest point (ICP) algorithm
to obtain a highly precise pose.

The advantages of the proposed method are numerous:
It is able to localize textured and untextured objects of any
shape and finds the full 3D pose of the object. Multiple
instances of the object can be found with little loss of per-
formance. The method can be trained either using a CAD
model of the object or using registered template images
taken from different viewpoints. When using templates, one
template per viewpoint is sufficient since the method is in-
variant against scale changes and in-plane rotations. The
method also shows high robustness to background clutter
and occlusions.

The proposed approach is evaluated both quantitatively
and qualitatively and compared against other state-of-the-
art methods. It shows comparable results and higher robust-
ness with respect to occlusions. In the remainder of this pa-
per, we will first discuss related works, describe our method
and finally present our results before concluding.

2. Related Work

A number of different surface descriptors were proposed
to detect free-form 3D objects. The most famous one are ar-
guably spin images [12], where the surface around a refer-
ence point is described as a histogram created by rotating a
half-plane around the point’s normal and intersecting it with
the surface. 3D shape contexts and harmonic shape con-
texts [7] are an extension of 2D shape contexts [3] to three
dimensions and represent the surface as a histogram and its
harmonic transformation. Tombari et al. [23] proposed a
framework that combines histogram-based and signature-
based descriptor approaches. Rusu et al. [18] use a his-
togram of point pair features as local surface descriptor,
which is then used for point cloud registration. Extensive
reviews over other descriptors are covered in [4, 14, 16].

Stiene et al. [21] proposed a detection method in range
images based on silhouettes. They rely on a fast Eigen-
CSS method and a supervised learning method. However,
their object description is based on a global descriptor of
the silhouette and is thus unstable in the case of occlusions.
They also require a strong model of the environment which
does not generalize well. Steder et al. [19] use an edge-
based keypoint detector and descriptor to detect objects in

range images. They train the descriptors by capturing the
object from all directions and obtain good detection results
on complex scenes. Wu et al. [24] used a perspective cor-
rection based on 3D data similar to the correction presented
in this paper.

Hinterstoisser et al. [9] proposed a multimodal template
matching approach that is able to detect textureless objects
in highly cluttered scenes but is sensitive to occlusion and
does not recover the 3D pose of the object. Sun et al. [22]
use multimodal information to simultaneously detect, cate-
gorize, and locate an object. However, while working well
in many scenarios, both approaches require large training
datasets. Lai et al. [13] proposed a distance-based approach
for object classification and detection in multimodal data
and provided a large evaluation dataset. However, they also
do not recover the pose of the object and show no results for
close-range clutter.

A couple of edge detectors for range images were pro-
posed, such as [19, 11]. However, designing a generic edge
detector for range images is a very difficult task. As dis-
cussed above, different range sensors, such as time-of-flight
cameras, stereo systems, structured light, laser triangula-
tion, depth-from-focus, or photometric stereo exhibit very
different characteristics in terms of noise, missing data, oc-
clusion, smoothing and other variables.

Drost et al. [6] use a local Hough-like voting scheme
that uses pairs of points as features to detect rigid 3D ob-
jects in 3D point clouds. The voting scheme optimizes the
overlap of object and scene surface. While the method is ef-
ficient and general, it has shortcomings when objects appear
similar to background clutter since edge information is not
taken into account. Our proposed method uses their voting
scheme for the localization step, however, using a different
edge-based point pair feature.

In this paper, we introduce novel edge based point pair
feature and couple it with the local Hough-like voting
scheme. We demonstrate that even with very basic edge
detection we can obtain very good results and overcome
the problems of related works. Compared to the method
of Hinterstoisser et al. [9], our approach is more robust to
occlusions and, thanks to the scale- and rotation-invariant
feature descriptor, requires less template images. Addition-
ally, the proposed approach is faster and more robust than
method of Drost et al. [6] when detecting objects which ap-
pear similar to background clutter. This is often the case
if the object’s surface contains large planar patches: Since
the method of [6] does not take the object boundaries or
the viewpoint-dependent appearance into account, such ob-
jects are often detected in walls or tables. Compared to the
method of Steder et al. [19], the proposed approach is more
robust as it does not require a feature-point detector which
relies on object parts with corner-like characteristics. In that
sense our proposed method is more generic than the related
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Figure 2. (a) Left: Even if the object is seen from the same di-
rection and from the same distance, lengths and angles appear dis-
torted in the image plane. Right: We apply a perspective correction
by reprojecting on a new image plane I ′ with the same focal dis-
tance, but orthogonal to the line of sight to the reference point r.
(b) Description of the used feature descriptor. Dashed vectors and
lines live in the image plane, while solid vectors are in 3D. Our
feature uses the angles αr , αn, and αv as well as the scaled dis-
tance Z(r)|r − e|/f . All four components are invariant against
in-plane rotations and scaling.

approaches and works well in many practical applications.
We designed a method that is robust to background clut-

ter, can efficiently handle occlusions and can find multiple
instances of the given object of interest. The key element
of our approach is a novel multi-modal point pair feature
that uses both geometric object edges in the intensity im-
age and depth from the range image. The proposed feature
combines the stable information from both modalities, is
invariant against scale and rotation changes and has a low
dimension that allows fast clustering using hashing. Since
it is based on the edge information the overall scene com-
plexity is reduced, making this approach faster than the one
of Drost et al. that uses all 3D points in the scene for the
search.

3. Method
The objective is to detect a given 3D object and deter-

mine its pose in an RGBD image. We assume that the 3D
model of the object we want to detect and localize is avail-
able to us. It can be provided as a man-created 3D CAD
model or reconstructed from multiple RGBD images by

moving the sensor around the object. The scene in which we
search for the object of interest is captured with an RGBD
sensor and may contain clutter and occlusions.

In the reminder of this section we will first introduce our
novel multi-modal feature and then discuss its use for object
model description and then detection and localization.

3.1. Multimodal Feature

Suppose that a 3D CAD model M of the object we want
to detect and localize is given to us as a surface with points
and normals. The scene in which we search the object of
interest is an RGBD image composed of intensity or color
image IC defined for domain ΩC and range or depth im-
age IR defined for domain ΩR. In practice, the range image
has to be calibrated so that we know the metric measure-
ment of the scene. Our principal intuition for the creation
of our multi-modal feature is that the intensity image pro-
vides accurate information at geometric edges where depth
sensors tends to fail, while the depth sensor provides in-
formation on the inner surface of the object where, in the
absence of texture, the intensity image provides little or un-
reliable information. Therefore, intensity image and range
image complement each other and our feature combines the
stable information from both modalities. The feature pairs
a reference point r ∈ ΩR from the range image, selected
from the visible part of the object, and a point e from the
geometric edge in the intensity image.

Since our feature is based on geometric object edges,
we will fist discuss how the geometric edges are extracted
from the RGBD image of the scene. Since the geometric
boundaries, and thus the geometric edges, of an object de-
pend on the viewpoint, our feature is inherently viewpoint-
dependent. Since we use a perspective camera model, mea-
surements of distances and angles are disturbed by the per-
spective distortion. In order to compensate for this distor-
tion we perform a perspective correction described below in
respect to a chosen reference point r. Finally, we describe
our multi-modal point pair feature.

Perspective Correction. Given a fixed camera, the ap-
pearance of an object in a projective image depends on the
direction from which it is seen, on the distance to the pro-
jection center, and on the position of the projection in the
image plane. The perspective distortion due to the posi-
tion in the image plane disturbs measurements of distances
and angles. To be robust against such distortion, we em-
ploy a perspective correction step that re-projects the edge
e ∈ ΩE , the reference point r ∈ ΩR, and its normal nr

onto a new image plane. ΩE is set of all edge pixels de-
tected in the color image. Without loss of generality, we
assume the camera center to be in the origin, i.e., the view-
ing direction towards r is vr = r/|r|. The new image plane
at which we project is defined as the plane perpendicular
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Figure 3. Example of the geometric edge detector. (a) Original
color image. (b) Edges extracted from the color image. (c) Range
image. (d) Filtered geometric edges: Color edges without depth
discontinuity perpendicular to the edge direction are removed.

to vr and with the same focal distance from the projection
center as the original image plane. The reference point r is
thus projected into the center of the new image plane, and
the visible features appear as if seen in the center of the im-
age. Fig. 2(a) depicts this correction step. For clarity, we
continue to write e and r even if the corrected values are
meant.

This undistortion is performed both in the online and the
offline phase, and boils down to a homography which is
efficiently applied on-demand to each edge point.

Geometric Edge Detection. Visible edges in an inten-
sity image can be categorized into texture edges, which are
found mainly on the inner parts of a surface, and geometric
edges that appear due to geometric boundaries in the scene.
The latter occur mainly on the occluding boundaries of ob-
jects. To localize an object, the proposed method uses only
the object’s geometric edges for several reasons. First, ev-
ery object, textured or untextured, has a silhouette and thus
a geometric boundary. The geometric edges are thus a very
generic feature. Second, there are typically less geometric
edges than texture edges in cluttered scenes, such that less
features need to be processed. Third, geometric edges com-
plement the surface information from the depth sensor as
described above. And finally, geometric edges are easy to
detect in RGBD images, as described in the following.

To obtain accurate geometric edges, we use an edge de-
tector that combines the accuracy of edges in intensity im-
ages with the expressiveness of depth discontinuities. For
this, we first detect edge pixels e with gradient direction ed

in the intensity image IC using the Canny color edge de-
tector [5]. The detected edges are then filtered using the
depth image to obtain the geometric edges. The filter com-
putes the minimum and maximum depth value on a line seg-
ment perpendicular to the edge direction. The edge point is
classified as geometric edge if the difference of maximum
and minimum depth value exceeds a certain threshold. The
threshold should be larger than the expected depth noise of
the sensor and is in practice set to 1-3 cm for images cap-
tured with a Kinect-like device.

This proposed filtering of geometric edges is computa-
tionally very efficient, since it needs to evaluate only a cou-
ple of pixels per detected color edge point. It is also robust
w.r.t. veil points and noise. The orientation of an intensity
edge depends on the local color gradient. We re-orient the
direction of the edge such that the gradient ed points out
of the object, i.e., from the surface closer to the camera to-
wards the surface further away. Fig. 3 shows an example of
the geometric edge detection.

Multimodal Feature. The multi-modal point pair fea-
ture in the perspectively corrected image centered at the
reference point r is described by F (e, r) using a four-
dimensional feature vector. This feature vector is designed
to depend only on the viewpoint of the camera w.r.t. the
object. It is most notably invariant against scale changes,
i.e., against the distance of the object from the camera,
against rotations of the object around the viewing direc-
tion, and against perspective distortions. This design al-
lows to train the proposed method using only one tem-
plate per viewpoint. Multiple scales and rotations, such as
in [9], are not required. The feature vector is defined as
F (e, r) = (d(e, r), αd, αn, αv) and contains:

• the metric distance d(e, r) = Z(r)|e− r|/f of the
two points. f is the focal length of the projection
system and Z(r) is the depth of the reference point
r. The scaling factor Z(r)/f transforms the measure-
ment from pixels to metric units, making it invariant
against the distance of the point pair from the camera,
i.e scale invariant;

• the angle αd = ∠(ed, e − r) between the difference
vector of the two points and the edge gradient ed;

• the angle αn = ∠(nr, e − r) between the difference
vector and the normal vector; and

• the angle αv = ∠(nr,vr) between the normal vector
and the direction towards the camera.

Fig. 2(b) depicts the four components of the feature vector.
Note that the first two angles are measured in the perspec-
tively corrected image plane, while the third is measured
in 3D. αd is in the range [0; 2π], αn and αv in the range



[0;π]. All four components are invariant against rotation
around the viewing direction due to the image plane correc-
tion. Additionally, they are invariant against the distance of
the two points from the camera.

In the following, we describe how this multimodal point
pair feature can be used to build a description of the object
of interest.

3.2. Model Description

In the offline phase, a model description that contains the
appearance of the object from various viewpoints is built.
This is done by rendering the model from viewing direc-
tions sampled on the sphere around the object. The model
description is represented by a hash table that maps quan-
tized multimodal feature vectors to the lists of similar fea-
ture vectors on the model. This is similar to the descrip-
tor used by Drost et al. [6], but using the proposed, view-
point dependent multimodal feature. The hash table allows
constant-time access to similar features on the object. The
following steps are performed to create the model descrip-
tion:

1. Take a set of model reference points by uniformly sam-
pling the model.

2. Select a set of viewing directions that contain all direc-
tions from which the object can be seen in the online
phase. In practice, we uniformly sampled at least 300
viewpoints from the unit sphere.

3. Obtain the object’s appearances IC , IR from the dif-
ferent viewing directions. This is done either by ren-
dering the object from the selected directions, or by
using template images taken by moving an RGBD sen-
sor around the object and registering the views to each
other.

4. For each template, detect the geometric edges on the
object as described above.

5. For each edge point e and each model reference point
r visible in the corresponding template, compute the
multimodal feature F (e, r), quantize it, and store it in
the hash table that describes the model.

The sampling parameters of the angle and distance co-
eficients of the feature depend on the expected noise level.
In practice, they are set to 12◦ for the angles and 2% of the
object’s diameter for the distance value.

3.3. Voting Scheme

The proposed method uses a local voting scheme similar
to the Generalized Hough transform [1] to recover the ob-
ject’s pose. The voting scheme is local in the sense that it lo-
calizes the object using a parametrization relative to a scene

Figure 4. Sketch of the voting scheme. A multimodal point pair
feature F (e, r) is extracted from the scene (left) and is quantized
and matched against the model description (center) using a hash
table. Each matching feature from the model leads to a vote in the
accumulator array (right).

reference point, similar to [6], instead of a global parame-
ter space as in the original GHT. Note that this approach is
only outlined below. For a more detailed description, we
refer the reader to [6].

Given a scene reference point r ∈ ΩR from the scene and
its normal nr, and assuming that r lies on the surface of the
object, one needs to recover the corresponding model point
m ∈M and the rotation α around the normal nr. (m, α) ∈
M × [0; 2π] are the local parameters of the object w.r.t. r.
If (m, α) are known, the object’s pose can be recovered.
Since the pose recovery requires that the scene reference
point lies on the object of interest, multiple reference points
are sampled uniformly from the scene depth image ΩR and
the voting scheme is applied to each of them.

For the voting scheme, the space M × [0; 2π] of local
parameters is quantized by using the model reference points
from the model generation step and by uniformly subdivid-
ing the range [0; 2π] of rotation angles. In practice, we use
around 60–150 model reference points and quantize the ro-
tation angle to 30 bins.

For each scene reference point, an accumulator is as-
signed to each sample of the local parameter space. The
scene reference point is then paired with each edge point
detected in the scene, and the corresponding feature vector
is computed. Each such feature vector is matched against
the model description to obtain the list of matching features
from the model, i.e., all possible locations of that feature on
the model. Each such location votes for one entry in the ac-
cumulator space. After all edge points are processed for the
current reference point, peaks in the accumulator space are
detected, and the corresponding poses are computed. Fig. 4
outlines the voting scheme for a scene reference point.

The closer the object is to the camera, the larger it ap-
pears and the more edges are visible, leading to a higher
score in the voting scheme. This bias is removed by mul-
tiplying the number of votes with the distance of the scene
reference point from the camera.



Pose Clustering. Due to its local nature, several votings
with reference points seeded throughout the scene need to
be done in order to cover the whole scene. After each vot-
ing, the peaks in the accumulator space are detected and
the corresponding poses and voting scores are stored. Af-
ter processing all reference points, a clustering step is ap-
plied to group the resulting poses. For this, a new score
is assigned to each pose which consists of the sum of
weighted scores of its neighboring poses. Additionally, a
non-maximum suppression is performed after the clustering
to obtain the most prominent peak and remove duplicate, al-
most similar detections.

Pose Refinement. Due to the discrete nature of the Hough
transform, each detected pose will be slightly off the correct
pose. This error is in the magnitude of the employed spacial
and angular sampling. In practice, an error of around 10◦

in rotation and 0.05 times the model diameter in translation
is usual. To obtain a more precise pose and score, we use
the iterative closest points algorithm (ICP) to refine the best
matches from the clustering step. Finally, a new score is
computed from the refined pose that expresses the amount
of visible object surface in the scene.

4. Results
We evaluated the proposed method quantitatively and

qualitatively on multiple datasets and compared it against
state of the art methods. All datasets were captured using a
Microsoft Kinect or a Primesense sensor to obtain an RGB
and a depth image with resolution 640× 480. Both modal-
ities were calibrated and registered.

All models were available as CAD model. The scene
reference points were selected by uniformly sampling the
scene with a distance of 4% of the object’s diameter. All
tests were run on an up-to-date computer using an unopti-
mized C implementation. The evaluation took 2-10 seconds
per scene, mostly depending on the scene size and the num-
ber of detected geometric edges. We believe that an im-
proved implementation would speed up the method by an
order of magnitude.

4.1. Quantitative Evaluation

Dataset Hinterstoisser et al. We first evaluated the
method on several sequences from Hinterstoisser et al. [9],
namly the APE, DUCK, CUP and CAR sequence. The
CAMERA and the HOLEPUNCHER sequence were not
evaluated as no CAD model was available. Each sequence
contains 255 template images that were used for learning
the features, and over 2000 evaluation images. Note that the
template matching used in [9] does not recover the pose, as
opposed to our method. Nevertheless, to allow a compari-
son between both methods, we employ the criteria of [9] to
classify the correctness of matches. This criteria compares
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Figure 5. From top left to bottom right: Detection results for the
APE, DUCK, CUP and CAR dataset from [9] for the proposed and
the compared methods. Note that the method of Hinterstoisser et
al. does not recover the object’s pose, as opposed to the other two
methods. The duck has a rather unique surface and is detected by
all three methods with a high detection rate. The car contains pla-
nar patches similar to background clutter, leading to misdetections
for the method of Drost et al. that uses the 3D information only,
while the two multimodal approaches keep a high recognition rate.
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Figure 6. (a) Example image of the artificial occlusion that cov-
ers the ape. (b) Detection rate vs. occlusion for the occluded ape
sequence. The occlusion measures how much of the original ape
surface visible in the image is occluded. (c) Example image show-
ing the occlusion on the real-world occlusion dataset and the de-
tection result of the proposed method in green. (d) Detection rate
vs. occlusion for the occluded chair sequence.

the bounding box of the ground truth and the match. Note
that this classifies matches at the correct position but with an
incorrect rotation as correct. However, we found that such
incorrect classifications were rare for our approach. Fig. 8
shows example scenes and detections. Fig. 5 shows the de-
tection rates for our proposed method, the method of Hinter-
stoisser et al. and the method of Drost et al. Again, note that
the proposed method and the method of Drost et al. recover



the pose of the object, while the method of Hinterstoisser et
al. does not.

Overall, our method performs slightly worse than the
method of Hinterstoisser et al., but still reaches quite high
recognition rates. A manual inspection of the scenes where
our method failed shows that most missing detections were
due to a failure of the 2D Canny edge extractor. This extrac-
tor failed in scenes with high motion blur and in areas with
little contrast, i.e., when object and background color were
similar. Compared to the localization method of Drost et
al., out method performs approximately equal for the duck
and cup sequence but significantly better for the ape and
car sequence. This is mostly due to the rather flat back of
the ape and the large planar parts of the car: The method
of Drost et al. optimizes the surface overlap of model and
scene, leading to false positives if large parts of the object
are similar to clutter. Our method, which optimizes both
surface and silhouette overlap, is able to correctly remove
such false positives.

Occlusion. We additionally evaluated the three methods
against partial occlusion of the target object using two
datasets. For the first dataset, one of the images from the
ape sequence was disturbed by artificially occluding differ-
ent parts of the ape in both the RGB and the depth image. A
total of 256 images with varying amounts of occlusion was
created this way. The detection rates of all three methods
and an example image are show in Fig. 6 (a), (b). Note that
we set the parameters of the method of Drost et al. such that
similar timings as our methods were obtained. As explained
in [6], higher detection rates can be achieved by allowing
the method to run significantly longer.

For the second dataset, we used varying amounts of real
occlusion of a chair that was put in a fixed position with
respect to the sensor. For the model creation, a reference
image without occlusion was used. Fig. 6 (c), (d) shows
an example image and the resulting detection rate for this
dataset.

Our method clearly outperforms both compared methods
in case of non-trivial occlusion. For the method of Hinter-
stoisser et al., occlusion of certain key regions of the object
that contribute the most to the detection lead to drastically
reduced detection rates. On the contrary, our method treats
all edge and inner regions equally. The method of Drost et
al. suffers from a similar effect, where for larger occlusions
the remaining surface parts of the object look more similar
to background. Since the proposed method optimizes both
surface and geometric edge overlap, significantly larger oc-
clusions are necessary to reduce the detection rate.

4.2. Qualitative Evaluation

The proposed method was also evaluated qualitatively
with object’s of different size and shape. Fig. 7 and Fig. 1
show several test images and detections. We found that the

method performs very well even in case of occlusion and
large amounts of clutter. The method works equally well
and with the same speed for all tested objects. This is a
major advantage over the method of Drost et al., which de-
generates both in terms of speed and detection performance
for planar objects.

5. Conclusion
Intensity images and range data complement each other.

The rise of structured light sensors that produce such data at
a low cost and with little calibration overhead increases the
importance of new methods that effectively use both modal-
ities. We proposed a method that is able to use the most
prominent and stable information from both modalities to
accurately detect and localize rigid 3D objects. A novel
multimodal point pair descriptor and a simple yet effective
and stable geometric edge extractor are used to simultane-
ously optimize surface and silhouette overlap of scene and
model. Experiments show a high detection rate even for
heavily cluttered scenes, an accurate pose recovery, a faster
detection than other localization methods as well as a very
high robustness against occlusions.
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