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Abstract

The Goal of this IDP was to extend the patch-based sur-
face tracking algorithm proposed by Cagniart et al., to a
skeleton based solution. Such a solution could be used to
track surgeons in an operating room and enhance human-
machine interaction paradigms in this context. We imple-
mented a model-based motion capture algorithm based on
3D point cloud data. An Expectation-Maximisation al-
gorithm computes the point cloud/body parts assignment
and the pose estimation is based on an Inverse Kinematics
framework. This final report includes a brief introduction
on the topic of motion capture, a discussion of the related
works, a description of the method and its implementation,
and concludes with some appreciation of the results.

1. Introduction

For decades now, computer vision scientists have been
looking at objects, and have been challenged by the search
for algorithms allowing to find and recognize objects. In
this work, we focus on systems capturing human motion.
When human beings are the objects to track, many chal-
lenges arises. Humans are highly articulated objects, which
means that pose changes (motion) are the result of complex
transformations. The common models comprise around 14
body parts and at most 6 DOF per parts, if only rigid trans-
formations are assumed. They can move fast and the parts
with sharpest acceleration, i.e. hands, are relatively small
compared to the rest of the body. They can adopt poses
which result in body parts occlusions in the camera pro-
jections. They are nonrigid objects, their shape deforms.
Humans share generally a common bone structure, but the
size of those bones varies a lot from one instance to another
and so does the shape of the flesh on the skeleton. In general

scenes, people will wear a variety of clothing, occluding the
body in various ways. So tracking their motion based on 2D
optical images is an hard problem. No currently known sys-
tems solve all those challenges at once and it is common to
simplify the problem by tuning the system on the expected
input and desired output data.

In the next paragraphs, we give a brief overview of the
different application areas using the taxonomy of Moeslund
and Granum [17] and see how these drive the assumption
making process.

Control Control applications typically offer gesture-
driven interfaces to further subsystems. So the motion cap-
ture component must deliver fast and accurate output. Ro-
bustness may or may not be an issue if a controlled environ-
ment is an option.

Surveillance For surveillance applications on the other
hand, typical scenes are cluttered and crowded, therefore
robustness is one of the most relevant issue. The output of
the motion capture component is not expected to be very
precise and detailed in terms of motion description but in-
formative enough in order to allow behavioural conclusions.

Analysis When it comes to designing analysis applica-
tions, accuracy is of absolute importance. Generally, analy-
sis takes place in controlled environments and offline.

Markerless vs. Marker-based One way to simplify the
task is the use of markers. Solutions using no markers on
the body are prefered, since they allow more flexibility. So
we focus on markerless motion capture (MMC).

Modelfree vs. Model-based Solutions may (Model-
based) or may not (Modelfree) be using an explicit human
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body model. The use of an a priori model surely add some
robustness to the system, but is not a trivial pursuit. The de-
sign of an appropriate model is highly complex. Nonethe-
less, many works have showed that careful approximations
give reasonable results. This work does use an explicit ar-
ticulated model.

Depending on the nature of the desired input data rep-
resentation, many camera configurations are in use. They
range from a single camera, monocular, to two (stereo)
or more point of views (multi-camera setups). We use a
multi-camera setup. This setup helps to resolve ambiguities
due to occlusions.

Our algorithm does the following motion assumptions:
the subject remains inside the workspace, no camera mo-
tion, only one person in the workspace at the time, no occlu-
sions from alien objects, slow and continuous movements
and high sampling rate.

We see for this work potential uses in the field of control
and analysis applications.

2. Related Works
It can be helpful for newcomers to look into the various

surveys available on MMC. While giving a strong focus on
taxonomy, like Gavrilla [10], Wang et al. [27], Poppe [22]
and Moeslund et al. [17, 18], they report on the various
challenges involved in motion analysis and the different ap-
proaches to tackle these. Espacially, Moeslund surveys re-
port on about 500 publications published up to 2006. A
comprehensive review of the field topics can be found in
Forsyth et al. [8]. More recent surveys concentrate on a
more restrained set of approaches to markerless motion cap-
ture (MMC), Tran and Trivedi [25] concentrates on model-
based works using volumetric representation up to 2008, Ji
and Liu [12] on view-invariant methods.

Following the lines of Forsyth et al. [8] and Moes-
lund [17, 18] the general problem of model-based MMC
can be subdivided into the following common tasks: mod-
eling, data preprocessing and pose estimation.

Modeling The first task for a model-based approach is to
acquire a model of the objects in the scene, here those ob-
jects are humans. There is the question as to how the model
is defined, and how it is initialized to represent a particular
object. Typically the detail level of the model is driven by
the desired output and chosen algorithm. Most methods use
strong prior knowledge on the deformation of the observed
object in the form of articulated models.

Pose Model
Generally the pose model encodes joint reference posi-

tions, body parts dimensions and orientations. Most com-
monly the desired output of MMC systems is a track of rigid

transformations describing the full body configurations over
time.

The influential works by Bregler et al. [2] introduced the
use of the twist representation [19] and exponential maps.
Pons-Moll and Rosenhahn[21] demonstrate that using a ball
model to represent joints with 3 rotational degrees of free-
dom, like shoulders and hips, resolves gimbal lock prob-
lems resulting from using 3 adjacent revolute joints, which
is equivalent to Euler angles. Some solutions do without
a kinematic tree representation like the works of Sigal et
al. [24] and Kakadiaris and Metaxas [13].

Shape Model
In order to find the object in the data, we also need a

model of the body’s shape. The shape model describes how
the body should look like in the data.

Some methods use regular volumetric shapes, like ellip-
soids or tapered cylinders [16], or more complex layered
versions of these like in [20]. Most common is to use a
3D reconstruction of actual body shape like in Carranza et
al. [4], Vlasic et al. [26] or more recently in Gall et al. [9].

The shape model of our tracking algorithm is a 3D re-
constructed mesh to which we fit manually a twist based
pose model with 25 DOF. See section 3.1.

There are solutions to initialize these models online,
see [1], but most works focusing on the tracking task, as
we do, initialize the model manually. Since the shape of
the body in the data may change over time the shape model
may have to be updated online in order to enhance tracking
quality. In this work, the shape model do not change over
time.

Data Preprocessing Once a body model is defined, the
next step is to preprocess the raw video data such that it can
be used in a sensible way for the pose estimation. This task
is completely assumed a priori in this work, but we mention
it for the sake of completeness.

Segmentation
At the lowest level, one must identify 2D image regions

belonging to the projection of the subject (foreground) from
regions that do not (background). Since in most studios, the
background is assumed static and its appearance chosen to
contrast well with the objects, usually some simply back-
ground substraction strategies are used to perform segmen-
tation.

Representation
Most tracking algorithms don’t work though directly on

the basis of the lowest data level, but need some higher level
representation. The representation tasks transforms the in-
put data, pixels in 2D images, to a data representation fitting
the model-data matching method.
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Our system works directly on 3D reconstructions, like
in Mikic et al. [16], Cheung et al. [5] and Cheng and
Trivedi [23].

Pose Estimation After the data from the video is deliv-
ered in an adequate representation, the missing step towards
a pose is to match the model to the data in a meaningful way
and search for the model configuration that optimize this
match according to some fitness measure, or cost function
as measure of nonfitness.

Model-Data Matching
The role of the model-data matching procedure is to pro-

vide a matching and a measure of how good this matching
is. The matching is the input to a cost function and its output
is the measure.

Typical for solutions based on volumetric data is to es-
tablish correspondences between points in 3D space and to
measure the fitness of the matching in terms of euclidean
distance between those points, that is to cast the problem
into a point cloud registration problem.

Since we have to deal with an articulated object, the
correspondence assignment have to take into account that
points are moving according to different rigid transforma-
tions.

A method for this registration problem is ICP, but this
algorithm as well as its extensions lack robustness when
confronted with outliers because of the determinism in the
choice of point assignments.

Among the recent approaches addressing the problem in
a probabilistic framework, are works by Horaud et al. [11]
and Cheng and Trivedi [23]. These approaches use the
Expectation-Maximization algorithm to iteratively reevalu-
ate smooth assignments between the model and the data.
We do as in Cagniart et al. [3] interleaving model-data
matching and parameter search in an iterative algorithm.
See section 3.3.

Parameter Search
Once a solution has a procedure to match model and data

and an appreciation of this match, what is left is to deter-
mine a strategy to optimize the model parameters such that
those represent the best possible match. This is a general
cost optimisation problem. Since the function from param-
eter space to 3D body position space is nonlinear, two ap-
proaches can be taken. Either one assumes an high sam-
pling rate, small changes in parameters, and a local linear
approximation or few assumptions on motion but an expen-
sive global search. Poppe [22] and Moeslund [17] refer to
these as single or multiple hypothesis tracking.

Among the earlier works, a popular strategy was to use
an extended Kalman filter as in Mikic et al. [16]. Due to
its intrinsic strong linear motion prior, this approach would

rapidly lose track of the object. Other local search strate-
gies, based on curvature analysis of the energy function, are
gradient-based as in Cheng et al. [23]. and stochastic meta
descent (SMD) by Kehl et al. [14], where data is iteratively
resampled.

More recent global approaches, on the other hand, sam-
ple the parameter space into multiple hypothesis. Among
those are grid search as in Carranza et al. [4]. and particle
filtering and its extensions, for instance the annealed parti-
cle filtering by Deutscher et al. [7]. These strategies how-
ever make the solution more expensive in proportion to the
number of samples, or particles, tracked. Much effort is in-
vested in heuristics to lower the number of samples needed.

As we aimed at a realtime solution, we adopted a local
search strategy based on gradient descent and implemented
the Gauss-Newton method. See section 3.2.

3. Method
3.1. Modeling

Our human body model is an articulated shape model. It
is composed of a pose and a shape model.

Pose Model
The pose model can be compared to the human skeleton.

It is composed of 5 open kinematic chains. A kinematic
chain is a serial composition of segments attached together
by joints. The chain is open if one end is loose (not con-
strainted by a joint). We assume that those joints, in the
human body, can perform only rotations with different de-
grees of freedom. The root joint, here the torso, is a special
joint, performing translations. Since all chains connect to
this joint, they all perform the same pose translation. We
parameterize those joints with the twist representation. See
Appendix A.1 for an introduction into twist representation.

We found that we could build an approximative model of
the human skeleton with the following three types of joints:

Translation The translational joint is parameterized with
a vector t = (∆t1,∆t2,∆t3) representing the translation
from the reference pose. It has 3 DoF.

Revolute The revolute joint is parameterized with a fixed
axis ω and a scalar ∆θ representing the rotation performed
from the reference pose. It has 1 rotational DoF.

Ball The ball joint is parameterized with a vector
ω = (ω1, ω2, ω3) giving the axis and amount of rotation
induced by the joinr. It has 3 rotational DoF.

We represent the pose configuration with a vector θ =
(θ1, θ2, . . . , θK), where the first 3 parameters represent the
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Figure 1: Red shows ball joints, green translational and blue
revolute joints.

overall translation and the rest, the rotational parameters,
represent the kinematic chains flatten such that all parame-
ters have an higher index as their kinematic ancestors.

Given an open kinematic chain with n axes of rotation,
all parameterized with twists ξ̂, it can be shown that:

x̄(θ) = eξ̂1θ1eξ̂2θ2 . . . eξ̂nθn x̄(0) (1)

where x̄(θ) is the position of a point on the last link of
the chain, in the configuration described by the n angles
θ = [ θ1 θ2 . . . θn ]

> (in homogenous coordinates); x̄(0)
represents the same point at a reference configuration of the
chain. Equation (1) is called the product of exponentials
formula for an open kinematic chain and it can be shown
that it is independent of the order in which the rotations are
performed. The angles are numbered going from the chain
base toward the last link.

Shape Model
The shape model is given by the polygonal surface re-

constructed from voxel data. The vertices of the model
shape are assigned to their corresponding body parts. This
process is sometimes called skinning and should be per-
formed automatically. For this work, we used the free
available 3D contruction software Blender1 which offers

1http://www.blender.org/

this computation based on manually placed body parts en-
velopes. With those links from body parts to vertices on the
body surface one can solve the forward kinematic subprob-
lem of computing the position of vertices given some pose
configuration, with eq. (1).

Figure 1 shows the pose and shape model overlayed.

3.2. Parameter Search

In the further description of our method, let us reverse the
process order. Since our method solves the pose estimation
task in an iterative manner between model-data matching
and parameter search, let us begin with the one that assumes
the least. For this section, where we explain how parame-
ter search is solved, we will assume a model-data matching
given.

3.2.1 Inverse Kinematics through Energy Optimisa-
tion

The inverse kinematic problem is to find the parameter val-
ues of the joints of the kinematic chain such that points at-
tached to the chain reach given positions. We solve this
problem by iteratively improving the parameter approxima-
tions w.r.t. a cost function. The cost function is:

E(θ) =
∑
y∈Y
‖x(θ)−y‖2 =

∑
y∈Y
‖r(θ)‖2 = ‖r(θ)‖2 (2)

where x is a 3D point of the shape model and y is a cor-
responding 3D point in the observed data cloud. The cost
function is basically modeling the sum of squared distances
between point correspondences at model configuration
θ. In order to find the model configuration minimizing
this energy, we first approximate the value of E after an
small update ∆θ by the first order linear approximation of
E(θ + ∆θ).

E(θ + ∆θ) = ‖r(θ) + Jr(θ)∆θ‖2 (3)

Such that the problem of minimizing E(θ) reduces to

∆θ? = arg min
∆θ

‖r(θ) + Jr(θ)∆θ‖2 (4)

In the least square sense, it amounts to solving the nor-
mal equations

∆θ? = −
(
Jr(θ)>Jr(θ)

)−1
Jr(θ)>r(θ) (5)

The optimisation procedure is described in algorithm 1.
In order to avoid a badly conditioned J>r Jr matrix, we

add on its diagonal a small constant, the damping parameter
λ, i.e. J>r Jr ≈ J>r Jr + λI .

Here, the attentive reader may point out, that we are
adding as parameter updates rotations, and that there are
no rotation representations being a vector space, i.e. close
under addition. We handle this point in 3.2.2.
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Algorithm 1 Solve(θ, E, Jr)

E ← E(θ)
repeat
scale← 1
∆θ? ← −(J>r Jr)

−1J>r E(θ)
while Eswap ≥ E do

∆θ ← scale ∗∆θ?

θswap ← θ + ∆θ
Eswap ← E(θ)
scale← scale/2

end while
if Eswap < E then
θ ← θswap
E ← Eswap

end if
numIter ← numIter + 1

until E < threshold and numIter < maxIter
return θ

3.2.2 Mesh Jacobian

We want to find the rate of change of points x attached to
a rigid body parts expressed in spatial coordinates w.r.t. the
parameters θ. x(θ) is a vector function in 3 dimensions and
depends on K parameters (given by the joints). That is, the
derivative of x(θ) is given by the jacobian matrix:

Jr(θ) =


∂x1

∂θ1
. . . ∂x1

∂θK
∂x2

∂θ1
. . . ∂x2

∂θK
. . . . . . . . .
∂xN

∂θ1
. . . ∂xN

∂θK

 =


Jx1(θ)
Jx2(θ)

...
JxN

(θ)

 (6)

Jr(θ) is a 3N × K matrix. We want to derive the entries
of Jxi

(θ). Notice that entries of Jxi
(θ) are all zeros for

parameters not affecting the position of xi, these are pa-
rameters not belonging to the kinematic chain of xi.

The new coordinates of a point xi attached to a rigid
body in spatial coordinates are given by:

xi(θ) = g(θ)xi(0) (7)

where g : RK → SE(3) is a function giving the rigid trans-
formation corresponding to parameters θ according to the
reference pose model. Differentiating yields:

Jxi
(θ) = Jg(θ)x(0) = Jg(θ)g−1x(θ)

=
[
∂g
∂θ1

g−1, . . . , ∂g
∂θK

g−1
]
x(θ)

=
[
∂g
∂θ1

g−1x(θ), . . . , ∂g
∂θK

g−1x(θ)
]

Now that we have found an expression for each column
of Jxi(θ), let us derive those concretely according to their
joint type.

Translate If we parameterize the translate joint with a 3-
dimensional vector, it can be shown that

∇translate(k)
i,j =

{
1 if i = k, j = 4

0 otherwise
(8)

is the 4× 4 linear differential operator for the point affected
by a translate joint w.r.t. parameter k.

Revolute A revolute joint is represented by a rotation of
magnitude θ around a known axis ω. The rigid transforma-
tion given by a rotation of θ radians about the axis ω is given
by the exponential map eξ̂θ.

So if θi parameterizes a revolute joint, it can be shown
(see Appendix A.2) that:

∂g

∂θi
g−1x(θ) =

[
T1 . . . Ti−1ξ̂iT

−1
i−1 . . . T

−1
1

]
x(θ) (9)

That is, the linear differential operator for the point af-
fected by a revolute joint is:

∇revolute =
[
T1 . . . Ti−1ξ̂iT

−1
i−1 . . . T

−1
1

]
(10)

Ball A ball joint represents a rotation about a unknown
scaled axis θω.

Let the transformation induced by the ball joint i be Ri.
Let its update be Rie[dω]× .
Then the rigid transformation after update dω,
Ti(Rie

[dω]×), is

Ti(dω) =

[
Rie

[dω]× (I −Rie[dω]×)q
0> 1

]
=

[
Ri (I −Ri)q
0> 1

] [
e[dω]× (I − e[dω]×)q
0> 1

]

If we assume e[dω]× ' I + [dω]×

Ti(dω) '
[
Ri (I −Ri)q
0> 1

] [
I + [dω]× − [dω]× q

0> 1

]
(11)

With this ball joint approximation, it can be shown (see
Appendix A.2) that:

∂x(θ)

∂dωi
= − [x(θ)− (R1...iq + t1...i)]×R1...i (12)

where R1...i is the total rotation and t1...i the total trans-
lation up to joint i. The ball joint is however a joint with
3 DoF and thus covers 3 columns of Jxi(θ). We would
like to break the linear differential operator with respect to
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the parameters of the rotation axis into 3 linear differen-
tial operators, that is ∂x(θ)

∂θ1
, ∂x(θ)

∂θ2
and ∂x(θ)

∂θ3
, if we assume

dω = (θ1, θ2, θ3)>.
After some computations we get a 4×4 linear differential

operator w.r.t. each axis parameter j.

∇ball(j) =

[[
Rj1...i

]
×
−
[
Rj1...i

]
×

(R1...iq + t1...i)

0T 0

]
(13)

whereRj1...i is the jth column of the total rotation up to joint
i.

Hence the jacobian matrix can be built in a general way
out of 3 × 1 vectors for each parameter (non-homogenous
representation) and the computation of the jacobian column
for parameter θi is simply the matrix-vector multiplication
∇ix(θ) for all joint types.

3.2.3 Joint Limits

To constrain the parameter space further, we add to the cost
functions the energy term Er(θ) penalizing joint configura-
tions going over some limits.

Revolute We limit the revolute joint angle with the func-
tion

r(θ) =


θ −min if θ < min

θ −max if θ > max

0 otherwise
(14)

Ball The reference pose prescribes the limiting vector xB
pointing, for instance, downwards for a hip. R is the current
rotation of the joint. The solver detects that x>BRxB < t,
for t a given threshold.

The regularization term is then the following expression

r(ω) =

{
x>BRxB − t if x>BRxB < t

0 otherwise
(15)

For the J>J and J>r, we have to do the derivative of
x>BRxB − t w.r.t. the update vector dω.

It can be shown (see Appendix A.3) that

Jr(dω) = (xB ∧R>xB)> (16)

3.3. Model-Data Matching

We continue the description of the method by motivat-
ing the bayesian modeling of our model-data matching ap-
proach and by explaining its resolution inside the E-step of
an expectation-maximisation algorithm. The M-step of this
algorithm consists in finding the parameters maximizing a
likelihood function as done in section 3.2.

3.3.1 Bayesian Model

As discussed in Sections 1 and 2 we deal with data-driven
surface fitting and cast the problem as the geometric regis-
tration of 3D point sets. In a Bayesian context, this means
that given a set of observed 3D points and an estimate of the
current pose of the mesh, we are faced with a maximum-a-
posteriori (MAP) estimation problem where the joint prob-
ability distribution of data and model must be maximized:

max
θ

ln P (Y,θ), (17)

where Y = {yi}i=1:m is the set of observed 3D points
{yi}i=1:m and their normals.

According to Bayes law P (Y,θ) = P (Y|θ)P (θ). For
P (θ), we make the approximation

P (θ) ∝ e−Er(θ), (18)

where Er(θ) is the energy term defined in Eqs.(14,42).
The likelihood P (Y|θ) remains to be approximated to

complete the generative model. This is done with a mixture
of distributions parameterized by a common covariance σ2,
where each component corresponds to a bone Bk. This re-
quires to introduce latent variables zi for each observation
yi ∈ Y , where zi = k means that yi was generated by the
mixture component associated with Bk. We also increase
the robustness of our model to outliers by introducing a uni-
form component in the mixture to handle points in the input
data that could not be explained by the body parts. This uni-
form component is supported on the scene’s bounding box
and we index it with Nb + 1.

P (yi|θ, σ) =

Nb+1∑
k=1

ΠkP (yi|zi = k,θ, σ), (19)

where the Πk = p(zi = k|θ, σ) represent probabilities on
the latent variables marginalized over all possible values of
yi. In other words they are prior probabilities on model-data
assignments. We define them as constants p(zi = k) = 1

Nb
.

The body part mixture component with index k must en-
code a distance between the position yi and the body part
Bk while accounting for the alignment of normals. For
computational cost reasons, we model this distance by look-
ing for each body part Bk in its current pose (this means
the positions {xi(θ)}xi∈Bk

and corresponding normals as
shown in Fig. 2) for the closest vertex with a compatible
normal vki . We consider two points and normals to be com-
patible when their normals form an angle smaller than a
threshold. In practice this threshold was set to 45◦ in all
of our experiments. This leads to the following model for
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B l
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i

Figure 2: A point/normal yi with position yi from the ob-
served data is associated to vki , the closest vertex with a
compatible normal for the body part Bk.

each component of the mixture:

∀k ∈ [1, Nb],

P (yi|zi = k,θ, σ) ∝

{
N (yi|xi(θ), σ) if vki exists,
ε otherwise

(20)

where ε encodes a negligible uniform distribution defined
on the scene’s bounding box.

3.3.2 Expectation-Maximization

The variables zi are unobserved but we can use the posterior
distributions of Eq. (21) in the Expectation Maximization
algorithm [6].

P (zi = k|yi,θ, σ) =
ΠkP (yi|zi = k,θ, σ)∑Nb+1
l=1 ΠlP (yi|zi = l,θ, σ)

. (21)

The idea is to replace P (Y|θ, σ) with the marginalization
over the hidden variables of the joint probability.

lnP (Y|θ, σ) = ln
∑
Z

q(Z)
P (Y, Z|θ, σ)

q(Z)
, (22)

where q(Z) is a positive real valued function that sums up
to 1. The concavity of the log function allows to write a
bound on the function of interest:

− lnP (Y|θ, σ) ≤ −
∑
Z

q(Z) ln
P (Y, Z|θ, σ)

q(Z)
. (23)

It can be shown that given a current estimate (θt, σt), it is
optimal to choose q(Z) = P (Z|Y,θt, σt) in that the bound-
ing function then touches the bounded function at (θt, σt).

This means that the bounding function should be the ex-
pected complete-data log-likelihood conditioned by the ob-
served data:

− lnP (Y|θ, σ) ≤ const− EZ [lnP (Y, Z|θ, σ)|Y,θt, σt].
(24)

We rewrite P (Y, Z|θ, σ) by making the approximation that
the observation process that gave Y draws the yi’s from this
distribution in an independent identically distributed way:

P (Y, Z|θ, σ) =

m∏
i=1

P (yi, zi|θ, σ) (25)

=

Nb+1∏
k=1

m∏
i=1

[
P (yi, zi = k|θ, σ)

]δk(zi) (26)

The choice made for q(z) then allows to write:

EZ [lnP (Y, Z|θ, σ)|Y,θt, σt] =

Nb+1∑
k=1

m∑
i=1

EZ [δk(zi)|Y,θt, σt] ln[Πkp(yi|zi = k,θ, σ)] (27)

which finally leads to the expression of the bounding func-
tion we need to minimize:

− lnP (Y|θ, σ) ≤ const

−
Nb+1∑
k=1

m∑
i=1

P (zi = k|yi,θt, σt) lnP (yi|zi = k,θ, σ).

(28)

We use the Expectation-Maximization algorithm to itera-
tively reevaluate the (θ, σ) and the posterior probability dis-
tributions on the latent variables {zi}.

In the E - Step the posterior P (zi|yi,θt, σt) functions are
evaluated using the current estimation θt, σt and the cor-
responding local deformations of the mesh. As defined in
Equation (21), these functions require to find for each target
vertex yi and body part k the vertex index vki of its nearest
neighbor at the configuration of the body part. The com-
plete E-Step amounts to the computation of a m× (Nb + 1)
matrix whose lines add up to 1, as shown in Figure 3. This
is an very parallel operation as all the elements of this ma-
trix can be evaluated independently, except for the normal-
ization of each line that takes place afterwards. In theory
it would be tempting to use space partitioning techniques
to speed up the nearest neighbor search. However the de-
pendency on the orientation of vertex normals makes this
cumbersome. In practice we run a brute-force search.

The M - Step requires to minimize the bounding function
defined by the the soft data - model assignment weights that
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Figure 3: The soft assignment matrix holds the posterior
body parts-assignment distributions for every vertex of the
target point cloud. As such, the lines are normalized to add
up to 1. The last column of the matrix corresponds to the
outlier class.

were computed in the E-Step:

θt+1, σt+1 = arg min

[
const+ Er(θ)

−
Nb+1∑
k=1

m∑
i=1

P (zi = k|yi,θt, σt) lnP (yi|zi = k,θ, σ)

]
(29)

In this bounding function, both data terms and joint limiting
terms are weighted squared functions. This fits exactly in
the framework defined in Section 3.2 and Equation (2). To
prevent the appearance of degenerate mesh configurations,
we however do not completely minimize the bounding func-
tion. Instead we just run one iteration of the Gauss-Newton
algorithm, which amounts to minimizing the quadratic ap-
proximation of the objective function around (θt, σt).

It should also be noted that we do not solve Equation (29)
in one maximization step but instead follow the Expecta-
tion Conditional Maximization (ECM) approach ([15]) that
shares the convergence properties of EM while being eas-
ier to implement. The idea is to replace the M-Step by a
number of CM-steps in which variables are optimized alone
while the others remain fixed. Thus in the M-step, we use
the mesh deformation framework to first optimize for θt+1,
then update σt+1.

4. Implementation

The design of Kineben consists of 3 framework and
2 applications components. The component model is
pictured in 4, with dependencies to 3rd party libraries.

«framework»
libKineben

«framework»
libKinebenUtils

«application»
Kineben_EM

«application»
Kinben_GUI

«framework»
libIndexedMesh

«library»
tvmet

«library»
lapack

«library»
QGLViewer

«library»
CUDA

Figure 4: Component model of the software.

Component Description
Framework
libIndexedMesh 3D Mesh utility functions.
libKineben Joint type definitions, kinematic

computations, normal equations
solver.

libKinebenUtils Skeleton definition and skinning
utilities, inverse kinematic solver.
EnergyTerm interface and skeleton
constraints implementation.

Application
KinebenGUI Graphical solver evaluation appli-

cation based on 3D hard constraints
energy term.

KinebenEM Motion tracker based on 3D EM-
based soft constraints energy term.

4.1. Kineben Framework

4.1.1 libKineben

To begin with, let us describe some important entities of the
library.

KBJoint is a struct representing a joint in a kinematic
chain. It has 2 members.

m type stores the joint type: KBJOINT REVOLUTE,
KBJOINT BALL, or KBJOINT TRANSLATE.
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m parentId stores the index of the parent joint in its
kinematic chain, or −1 if it is the root joint.

KBJoint* tree is an array of type KBJoint storing
the skeleton structure. Each element has an index bigger
than its member m parentId.

Param objects store or compute reference pose informa-
tions.

int* KBParamDim stores the dimension of the refer-
ence pose description of the joint types.

double* paramVec stores the complete reference pose
configuration, ordered as in KBJoint* tree.

KBComputeParamDim computes the size of paramVec.

State objects store or compute track informations.

int* KBStateDim stores the dimension of the track of
the joint types.

double* stateVec stores the complete track, ordered
as in KBJoint* tree.

KBComputeStateDim computes the size of stateVec.

Update objetcs store or compute track update informa-
tions.

int* KBUpdateDim stores the number of update
parameters of the joint types.

double* updateVec stores all update values, ordered
as in KBJoint* tree.

KBComputeUpdateDim computes the size of
updateVec.

double* Ti is a 3 × 4 matrix representing the rigid
transformation of KBJoint i.

KBcomputeTis computes all transformations in
KBJoint* tree.

double* TTi is a 3 × 4 matrix representing the
composite rigid transformation up to KBJoint i.

KBcomputeTTis computes all composite transforma-
tions in KBJoint* tree.

double* DDi is a 3 × 4 matrix representing the linear
differential operator of KBJoint i.

KBcomputeDDis computes all linear differential opera-
tors in KBJoint* tree.

KBsolve The library solves the so-called normal equa-
tions of the Gauss-Newton method, Eq. (5) of section 3.2,
in the following C routine:

int
KBsolve(int numParams,

const double* JTJ,
const double* JTb,
double epsilon,
double* update);

numParams is the number of update parameters involved
in the normal equations.

JTJ stores the J>J matrix. Its size should be
numParams×numParams.

JTb stores the J>b vector. Its size shoud be numParams.

epsilon stores the Marquardt parameter value.

update stores after function call completion the estimated
update values. Its size should be numParams.

The user applies the estimated updates to the state vector
with:

void
KBapplyUpdate( int numJoints,

const KBJoint* tree,
const double* stateVec_old,
const double* updateVec,
const double updateScale,
double* stateVec_new );

The user includes this functionality with Kineben.h.

4.1.2 libKinebenUtils

This library build on the functionalities of libKineben and
offers utility functions and classes to skeleton tracking ap-
plications. We describes here the main objects of this li-
brary.
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IEnergyTerm is an abstract class specifying the interface
of an energy term in the cost function, Eq. (2). It has the 2
following pure virtual functions:

virtual
void
addToJTJ_JTb( const double* sv,

const double* Tis,
const double* TTis,
const double* DDis,
const int updateDim,
const int* updateDep,
const int* updateDep_bounds,
double* JTJ,
double* JTb)= 0;

virtual
double
computeEnergy( const double* sv,

const double* Tis,
const double* TTis ) = 0;

addToJTJ JTb adds in the matrices J>J and J>b the
contribution of the energy term.

computeEnergy returns the value of this energy term
given a state vector and transformations Tis and TTis.

Solver is a Gauss-Newton solver. To solve a given in-
verse kinematic problem, the user calls the following mem-
ber function:

int
solve( int maxIter,

int maxSubDiv,
const std::list<IEnergyTermPtr>& eTerms,
const double* currSV,
double* SV);

maxIter is the maximum number of converging itera-
tions.

maxSubDiv is the maximum number of subdivisions of
the shift vector, if divergence occurs.

eTerms is a list of boost::shared ptr to IEner-
gyTerm objects, thus representing the cost function to
minimize.

currSV is the starting state vector, i.e. the starting point
in the search space.

SV stores after function completion the minimizing state
vector. The expected size of this vector and currSV is
computed in the constructor of the solver.

The interfaces to IEnergyTerm and Solver are in-
cluded with Kineben solver.h.

EnergyTerm SkelConstraints is a derived
class of IEnergyTerm. It implements the energy
term constraining the joint orientations and angles,
Eq. (42) and (14). This interface is included with
EnergyTerm SkelConstraints.h.

RiggedMesh is a data structure storing the assignments
of reference mesh vertices to joints. Its important members
are:

coords stores the vertices of the reference mesh. These
are given in the constructor, as a .off file.

vj stores the assignment of a vertex to a joint, i.e.
vj[i] ← joint(coords[i]). These are given in the
constructor, as a .vj file.

jv stores the same information as vj, but group vertices
by increasing joint order and store the coords index
of the vertex. The order is specified by the KBJoint
vector given as argument to the constructor.

jv bounds stores the joint group bounds of jv. It
has Nb + 1 slots. Thus jv[jv bounds[0]]
stores the first vertex belonging to the first joint and
jv[jv bounds[1]] the last (not inclusive)

Skel.h defines functions to read a .skl file and generate
a skeleton tree.

KBParse parses the .skl file into KBNodes.

KBGenJoints generates from KBNodes a KBJoint*
tree, as well as a paramVec and a stateVec.

KBBVHWriter writes a BVH file. The file contains two
main parts, HIERARCHY, storing the skeleton structure,
and MOTION storing the track. See Appendix A.6 for the
format specification of BVH motion files.

KBBVHWriter::writeFrame allows to store one
frame of the track.

4.2. Kineben Applications

4.2.1 KinebenGUI

For the evaluation of the body model, we developed the
application KinebenGUI. The GUI framework is inherited
from the 3rd party library QGLviewer2. Figure 5 shows

2http://www.libqglviewer.com/
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the typical use case. The application loads the body model,
that is the skeleton pose and the reference mesh. The user
moves the mouse where he wishes a vertex of the mesh
to be defined as constrained and press ’c’. A red box ap-
pears to show the constraint. To select a constraint, the
user holds shift and clicks on the right button over the red
box. To move it, he holds ctrl and right mouse button while
he moves the mouse. A solution is computed by pressing
ctrl+s. Holding everything while moving the constraint, ex-
hibits the realtime response of the solver (under these few
constraints).

EnergyTerm 3DConstraint is a derived class from
the base class Kineben::IEnergyTerm.

addToJTJ JTb loops over all M constraints ym ↔ xm
and compute the following sum:

J>J(i,j) =

M∑
m=1

δi,j(θ, xm)

[
∂xm(θ)

∂θi

]> [
∂xm(θ)

∂θj

]

J>b(i) =

M∑
m=1

δi(θ, xm)

[
∂xm(θ)

∂θi

]>
(xm − ym)

δi,j(θ, xm) =

{
1, if θi and θj in the kinematic chain of xm
0, otherwise

computeEnergy loops over all M constraints ym ↔ xm
and compute the cost function, Eq. (2).

The arguments to the executable are listed in the follow-
ing table:

-off A reference mesh file (.off) containing vertices
and triangles of the shape model.

-skl A skeleton definition file (.skl) describing the
pose model. It specifies the joint hierarchy,
reference positions and orientations. See Ap-
pendix A.4 for the format specification of skele-
ton definition files.

-cst A joint constraints file (.cst) describing the ori-
entation and angle constraints of the joints. See
Appendix A.5 for the format specification of
constraints definition files.

-vj A vertex/joint assignment file (.vj) is listing
the vertex/body part assignments. The line
number is the index of the vertex in the mesh file
(.off) and the joint name appearing on this line
is the body part to which this vertex belongs.

4.2.2 KinebenEM

The application KinebenEM is a skeleton pose tracker
working on 3D Mesh inputs. The output is a BVH file,

wherein the skeleton initial pose and track are written.

IEnergyTerm EM is derived abstract class from the
base class Kineben::IEnergyTerm. It specifies one
additional pure virtual function.

Estep is a pure virtual function, whos intended purpose is
to compute the current model-data matching, see section
3.3.2. Its implementing classes store the posterior matrix
as in figure 3. We call the entries of this M ×K matrix
weights, wkm, storing the weight attributed to the match
of observed vertex m with the generating vertex of joint
k. Estep stores the index of the generating vertex in
index(m, k), let this vertex be xkm.

virtual
void
EStep( const float sigma,

const float normThresh,
const float EOutlier,
const double* TTis ) = 0;

addToJTJ JTb loops over all M observed vertices ym
and compute the following sum:

J>J(i,j) =

M∑
m=1

Nb+1∑
k=1

δi,j(θ, x
k
m)wkm

[
∂xkm(θ)

∂θi

]> [
∂xkm(θ)

∂θj

]

J>b(i) =

M∑
m=1

Nb+1∑
k=1

δi(θ, x
k
m)wkm

[
∂xkm(θ)

∂θi

]>
(xkm − ym)

δi,j(θ, x
k
m) =

{
1, if θi and θj in the kinematic chain of xkm
0, otherwise

computeEnergy loops over all M observed vertices ym
and compute the value of the cost function:.

E =

M∑
m=1

Nb+1∑
k=1

wkm(xkm − ym)>(xkm − ym)

EnergyTerm EM implements the pure virtual function
Estep of the abstract class IEnergyTerm EM.

EStep runs the Estep of our Expectation-Maximisation
algorithm, section 3.3.2, on graphic cards supporting
the CUDA progamming language and is implemented in
CUDA KERNEL ENN EStep.cu.
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(a) Load model. (b) Define constraints. (c) Move constraint. (d) Solve.

Figure 5: Model and Inverse Kinematic Solver Testing with KinebenGUI.

The arguments to the executable are listed in the follow-
ing table:

The same 4 arguments as in KinebenGUI
-cloudBasename A path to numbered .off files (Note:

put a printf numbering format for
your file numbering, eg. %03d).

-outBVH A file path for the output BVH file.
-F First frame number.
-L Last frame number.
-NThresh Normal correspondence threshold.
-sigma0 Initial sigma value for the gaussian

components of the mixture of gaus-
sians in the Estep.

-Eoutlier propability measure of outliers.

Output A BVH Motion file.

5. Results
We ran our tracking KinebenEM application on video

sequences available at CSAIL3. This dataset offered us the
possibility to test our tracker directly on 3D point clouds
without having to implement the 3D reconstruction prepro-
cessing. For each 5 seconds long video, we get then around
175 data clouds. The tracker performs at a frame rate of 1
Hz on a CUDA-enabled laptop PC; Intel R©CoreTMi7-620M
processor and a NVIDIA NVS 3100 graphic card.

We achieved the best results with Marquardt parameter
set to 0.1 (still hardcoded) and command line arguments
sigma0 set to 4.0, NThresh to 0.6 and Eoutlier to 0.1.

The crane sequence exhibits a character performing a
crane walk. This is a simple case, where all body parts
are moved, but very few occlusion phenomena occur (if
the number of cameras in the multi-camera setup is high
enough). By visual inspection we could confirm that the
tracker delivered a successful track in this case. Figure 6
shows three frames from the skeleton track overlayed on

3http://people.csail.mit.edu/drdaniel/mesh animation/index.html

images from one of the cameras.

In the handstand sequence the character flips 180◦ along
the Z-axis to stand on his hands. The challenge of this
sequence consists in tracking this flip, where all normals of
the observed mesh stand in the opposite direction relative
to the reference mesh. In this case also, we got a successful
track.

The jumping sequence challenges the tracker, in that it
exhibits fast movements in all directions. Since the char-
acter brings his arms often near the torso, this sequence
contains occlusions that are hard for the tracker to disam-
biguate. Near the frame 138, for instance, the reconstruc-
tion is noisy, due to the visual hull reconstruction approach,
and vertices are assigned to wrong body parts. The result is
that arms stick to the torso, until the character brings them
back in a relative unambiguiate neighborhood.

6. Conclusion
We could achieve many of the goals we set. We

• . . . gained an impressive knowledge of the literature on
motion capture;

• . . . derived a taxonomy for the multiple involved tasks;

• . . . extended the patch-based method to body parts;

• . . . gained experience in the exact mathematical deriva-
tion of self-designed solutions;

• . . . got deep insights and experience in the program-
ming languages C, C++, CUDA and Python;

• . . . designed a CMake-based multi-platform reusable
framework;

• . . . could convince us that the method was working
through applications build on the framework;

• . . . presented the work to the chair;
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(a) (b) (c)

Figure 6: Crane Sequence

• . . . wrapped up everything in this report;

As nature is complex and ever evolving, nothing is per-
fect and complete. We mention some problems unsolved
and areas for enhancement:

• Comparative evaluation of the method with related so-
lutions of other laboratories working on the subject.

• A global refinement of the locally estimated pose;
maybe as in Gall et al. [9].

• A vertex/body part assignment prior that is not con-
stant, since the proportion of vertices per body part is
neither constant over time nor over all parts; see sec-
tion 3.3.1.

• Investigate which CPU computations are portable to
GPU and optimize time.

• Write code documentation.

• Refactor interfaces such that other solver algorithms
are pluggable.

• Refactor interfaces such that solver algorithms work-
ing on 2D data are pluggable.

• Work out a solution to track people with loose clothes,
multiple and/or unknown objects.

• Implement an automatic model initialisation solution.

• Couple to a multi-camera studio, to perform online
tracking.
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A. Appendix

A.1. Twist Representation

This section is for the most part a transcript from Mikic et al. [16], completed and corrected with a comparison to Murray
[19].

Let us consider a rotation of a rigid object about a fixed axis. Let the unit vector along the axis of rotation be ω ∈ R3 and
q ∈ R3 be a point on the axis. Assuming that the object rotates with unit velocity, the velocity vector of a point x(t) on the
object is:

ẋ(t) = ω × (x(t)− q) (30)

This can be rewritten in homogeneous coordinates as:[
ẋ
0

]
=

[
ω̂ −ω × q
0 0

] [
x
1

]
= ξ̂

[
x
1

]
(31)

or, in a compact form,

˙̄x = ξ̂x̄ (32)

where x̄ = [x 1 ]
> is a homogeneous coordinate of the point x, and ω × z = ω̂z,∀z ∈ R3, i.e.,

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (33)

and

ξ̂ =

[
ω̂ −ω × q
0> 0

]
=

[
ω̂ v
0> 0

]
(34)

is defined as a twist associated with the rotation about the axis defined by ω and q. ξ = (ω1, ω2, ω3, v1, v2, v3) are called
the twist coordinates of this rotation.

The solution to the differential Equation (30) is:

x̄(t) = eξ̂tx̄(0) (35)

eξ̂t is the mapping (the exponential map associated with the twist ξ̂) from the initial location of a point x to its new location
after rotating t radians about the axis defined by ω and q. It can be shown that

T = eξ̂θ =

[
eω̂θ (I3 − eω̂θ)(ω × v) + ωω>vθ
0> 1

]
(36)

where

eω̂θ = I3 +
ω̂

‖ω‖
sin(‖ω‖θ) +

ω̂2

‖ω‖2
(1− cos(‖ω‖θ)) (37)

is a rotation matrix associated with the rotation of θ radians about an axis ω. Eq. (37) is known as Rodriguez Formula.

T is a rigid transformation, i.e. T ∈ SE(3). The term ωω>vθ in the matrix block T12 is 0 for purely rotational twists.
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A.2. Derivation of the joint type based linear differential operators

We saw in section 3.1 that the coordinates of a point x attached to a segment inside an open kinematic are given by

x̄(θ) = g(θ)x̄(0) (38)

differenting yielded

Jxi
(θ) =

[
∂g

∂θ1
g−1, . . . ,

∂g

∂θK
g−1

]
x̄(θ) (39)

a differential 4 × 4 ×K tensor multiplied to x̄(θ). The following gives the full derivation of the 4 × 4 components of this
tensor.

Revolute If θi is the angle parameter of a revolute joint:

∂g

∂θi
g−1x̄(θ) =

∂

∂θi
(T1 . . . Ti . . . TK)(T1 . . . Ti . . . TK)−1x̄(θ)

=
∂

∂θi
(T1 . . . Ti . . . TK)T−1

K . . . T−1
i . . . T−1

1 x̄(θ)

=
∂

∂θi
(T1 . . . e

ξ̂iθi . . . TK)T−1
K . . . e−ξ̂iθi . . . T−1

1 x̄(θ)

= T1 . . . ξ̂ie
ξ̂iθi . . . TKT

−1
K . . . e−ξ̂iθi . . . T−1

1 x̄(θ)

TkT
−1
k factors vanish for all k ≥ i, to give

=
[
T1 . . . Ti−1ξ̂iT

−1
i−1 . . . T

−1
1

]
x̄(θ)

Ball A ball joint represents a rotation about a scaled unknown axis θω. In section 3.2.2 we found that we can approximate
the rigid transformation induced by a small axis update dω by

Ti(dω) '
[
Ri (I −Ri)q
0> 1

] [
I + [dω]× − [dω]× q

0> 1

]
(40)

We look at the position of x after this update dω

x̄(θ + dω) = g(θ + dω)x̄(0)

= T1 . . . Ti−1Ti(dω)Ti+1 . . . Tnx̄(0)

= T1 . . . Ti−1

[
Ri (I +Ri)q
0> 1

] [
I + [dω]× − [dω]× q

0> 1

]
Ti+1 . . . Tnx̄(0)

= T1 . . . Ti

[
I + [dω]× − [dω]× q

0> 1

]
Ti+1 . . . Tnx̄(0)

= T1 . . . Ti

[[
I 0
0> 1

]
+

[
[dω]× − [dω]× q

0> 0

]]
Ti+1 . . . Tnx̄(0)

= T1 . . . Ti

[
I 0
0> 1

]
Ti+1 . . . Tnx̄(0) + T1 . . . Ti

[
[dω]× − [dω]× q

0> 0

]
Ti+1 . . . Tnx̄(0)

= x̄(θ) + T1 . . . Ti

[
[dω]× − [dω]× q

0> 0

]
Ti+1 . . . Tnx̄(0)
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bringing x̄(θ) on the left side

x̄(θ + dω)− x̄(θ) = T1 . . . Ti

[
[dω]× − [dω]× q

0> 0

]
Ti+1 . . . Tnx̄(0)

=

[
R1...i t1...i
0> 1

] [
[dω]× − [dω]× q

0> 0

] [
Ri+1...n ti+1...n

0> 1

]
x̄(0)

where R1...i is the rotation block of the composite transformation from joint 1 up to i and t1...i its translation,

=

[
R1...i [dω]× −R1...i [dω]× q

0> 0

] [
Ri+1...n ti+1...n

0> 1

]
x̄(0)

=

[
R1...i [dω]×Ri+1...n R1...i [dω]× ti+1...n −R1...i [dω]× q

0> 1

]
x̄(0)

if we truncate the homogenous coordinate, we get

x(θ + dω)− x(θ) = R1...i [dω]×Ri+1...nx(0) +R1...i [dω]× ti+1...n −R1...i [dω]× q

we apply T · a ∧ b = T · a ∧ T · b,

= [R1...idω]×R1...iRi+1...nx(0) + [R1...idω]×R1...iti+1...n − [R1...idω]×R1...iq

by distributivity of the factor [R1...idω]×, we get

= [R1...idω]× (R1...iRi+1...nx(0) +R1...iti+1...n −R1...iq)

= [R1...idω]× (R1...i(Ri+1...nx(0) + ti+1...n)−R1...iq)

we replace the term (Ri+1...nx(0) + ti+1...n) with its equivalent T−1
1...ix(θ),

= [R1...idω]× (R1...i(R
>
1...ix(θ)−R>1...it1...i)−R1...iq)

since the inverse of a rotation is its transpose, we get

= [R1...idω]× (x(θ)− (R1...iq + t1...i))

we apply the rule a ∧ b = −b ∧ a,

= − [x(θ)− (R1...iq + t1...i)]×R1...idω

and get finally,

x(θ + dω)− x(θ)

dω
= − [x(θ)− (R1...iq + t1...i)]×R1...i

With dω small enough, we approximate the rate of change in position of x̄(θ)w.r.t. the parameters of a ball joint with:

∂x(θ)

∂dω
' x(θ + dω)− x(θ)

dω
= − [x(θ)− (R1...iq + t1...i)]×R1...i (41)

If we develop the expression on the rigth side further, we can even break the linear differential operator with respect
to the parameters of the rotation axis into 3 linear differential operators, that is ∂x(θ)

∂θ1
, ∂x(θ)

∂θ2
and ∂x(θ)

∂θ3
, if we assume

dω = (θ1, θ2, θ3)>.
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R             xB

xB

Figure 7: Rx is constrained by the dot threshold cone.

The operator is:

∂x(θ)

∂dω
= − [x(θ))− (R1...iq + t1...i)]×R1...i

if we focus on the columns and let Ri be the ith column of R, we get

= −

 (x(θ)− (R1...iq + t1...i))×R1
1...i (x(θ)− (R1...iq + t1...i))×R2

1...i (x(θ)− (R1...iq + t1...i))×R3
1...i


=

 R1
1...i × (x(θ)− (R1...iq + t1...i)) R2

1...i × (x(θ)− (R1...iq + t1...i)) R3
1...i × (x(θ)− (R1...iq + t1...i))


∂x̄(θ)

∂dω
=

 ∂x̄(θ)
∂θ1

∂x̄(θ)
∂θ2

∂x̄(θ)
∂θ3


where

∂x̄(θ)

∂θi
=

[
[Ri1...i]x −[Ri1...i]x(R1...iq + t1...i)

0> 0

]
x̄(θ)

A.3. Energy Term constraining ball joints

The reference pose prescribes the limiting vector xB pointing, for instance, downwards for a hip. R is the current rotation
of the joint. The solver detects that xB ·RxB < T , for T a given threshold. Figure 7 conveys this simple idea.

The regularization term is then the following expression

r(ω) =

{
x>BRxB − t if x>BRxB < t

0 otherwise
(42)

For the J>J and J>r, we have to do the derivative of x>BRxB − t w.r.t. the update vector dω.

We procede by finite difference:

r(ω + dω)− r(ω) = x>BRe
[dw]xxB − t− x>BRxB + t

if we take e[dw]x ' (I + [dw]x), and take canceling thresholds out, we get

= x>B [R(I + [dw]x)xB ]− x>BRxB

reordering terms, the right hand side becomes

= x>BR(dw ∧ xB)

= (dw ∧ xB)>R>xB
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then the rule (a ∧ b) · c = −(c ∧ b) · a,

= −(R>xB ∧ xB)>dw = (xB ∧R>xB)> · dw

thus

∂r(ω)

∂dω
' r(ω + dω)− r(ω)

dω
= (xB ∧R>xB)>.

A.4. Skeleton Definition File

〈SKELDEFFILE〉→ KBSKEL 〈INT〉 〈GRAPH〉 〈COORDINATES〉

〈GRAPH〉→ ( 〈IDENTIFIER〉 〈TYPE〉 ( 〈IDENTIFIER〉 | NULL ) )+

〈IDENTIFIER〉→ [0-9A-Za-z][.]+

〈COORDINATES〉→ ( 〈TRANSLATE COORDINATES〉 | 〈REVOLUTE COORDINATES〉 |
〈BALL COORDINATES〉 )+

〈TRANSLATE COORDINATES〉→ 〈IDENTIFIER〉 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉

〈REVOLUTE COORDINATES〉→ 〈IDENTIFIER〉 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉

〈BALL COORDINATES〉→ 〈IDENTIFIER〉 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉

〈FLOAT〉→ [–]?[0-9][0-9]+[[̇0-9]+]?[[eE][0-9][0-9]+]

〈INT〉→ [–]?[0-9][0-9]

A.5. Constraints Definition File

〈CSTFILE〉→ KBCST 〈INT〉 〈CONSTRAINTS〉

〈CONSTRAINTS〉→ ( 〈TRANSLATE CONSTRAINTS〉 | 〈REVOLUTE CONSTRAINTS〉 |
〈BALL CONSTRAINTS〉 )+

〈TRANSLATE CONSTRAINTS〉→ 〈IDENTIFIER〉 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉

〈REVOLUTE CONSTRAINTS〉→ 〈IDENTIFIER〉 〈MIN ANGLE〉 〈MAX ANGLE〉

〈BALL CONSTRAINTS〉→ 〈IDENTIFIER〉 〈HEADING AXIS〉 〈MAX ANGLE〉 〈BANK AXIS〉
〈MAX ANGLE〉

〈MIN ANGLE〉→ 〈FLOAT〉

〈MAX ANGLE〉→ 〈FLOAT〉

〈HEADING AXIS〉→ 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉
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〈BANK AXIS〉→ 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉

〈FLOAT〉→ [–]?[0-9][0-9]+[[̇0-9]+]?[[eE][0-9][0-9]+]

〈INT〉→ [–]?[0-9][0-9]

A.6. BVH Format

〈BVHFILE〉→ 〈HIERARCHY〉 〈MOTION〉

〈HIERARCHY〉→ HIERARCHY 〈ROOT JOINT DECL〉

〈ROOT JOINT DECL〉→ ROOT 〈IDENTIFIER〉 〈JOINT BODY〉

〈IDENTIFIER〉→ [0-9A-Za-z][.]+

〈JOINT BODY〉→ { OFFSET 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉 CHANNELS 〈INT〉 〈CHANNEL〉+ (
〈JOINT DECL〉 | 〈END SITE〉 ) }

〈JOINT DECL〉→ JOINT 〈IDENTIFIER〉 〈JOINT BODY〉

〈END SITE〉→ End Site { OFFSET 〈FLOAT〉 〈FLOAT〉 〈FLOAT〉 }

〈CHANNEL〉→ Xposition | Yposition | Zposition | Xrotation | Yrotation | Zrotation

〈MOTION〉→MOTION Frames : 〈INT〉 Frame Time : 〈FLOAT〉 〈FRAME〉*

〈FRAME〉→ 〈FLOAT〉+

〈FLOAT〉→ [–]?[0-9][0-9]+[[̇0-9]+]?[[eE][0-9][0-9]+]

〈INT〉→ [–]?[0-9][0-9]

A.7. Skinning with Blender

Setup

1. Load reference mesh (.off). Doing this deselect all options.

2. Load or construct skeleton. Make sure that mesh and skeleton share the same origin.

3. Run the script “addJointTypeToBonePanel.py” to add the joint type selection to the bone properties panel.

Skinning Envelopes Setup Rigging Envelopes. Modus Edit; go to object Armarture, select Display Envelope For each
bone:

1. select bone

2. make sure envelope is big enough to enclose all vertices belonging to this bone. If one vertex is missing, it won’t
appear in the output vj.txt file and it becomes inconsistent with the ref mesh. The script should fail, because a
vertex has no vertex group.
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3. if a bone should have no vertex, like the root bone, deselect the deform options (this bone does not deform the mesh).

4. select the bone’s type in the bone properties panel.

Skinning Once everything is set up, you can compute the skinning

1. select the mesh.

2. hold shift and select the armature.

3. press Ctrl+P (for setparent)

4. in the context menu choose set parent with envelopes.

5. this creates vertex groups in the armature.

Output skinning files

1. Output .vj file by running export groups.py.

2. Output the .skl file with export skel file.py.
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