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Abstract. We introduce a deep-learning based framework based on a
multilayer perceptron for estimation of the output parameters of a model-
based analysis of MR spectroscopy data. Our proposed framework: (1)
learns the spectral features from a training set comprising of different
variations of synthetic spectra; (2) uses this learning and performs non-
linear regression for the subsequent metabolite quantification. Experi-
ments involve training and testing on simulated and in-vivo human brain
spectra. We estimate parameters such as metabolite-concentration ratios
and compare our results with that from the LCModel.

1 Introduction

Quantification of MR Spectroscopy (MRS) signals generates metabolic maps
which show the concentration of metabolites in the sample being investigated.
Accurate quantification of these metabolites is important for diagnosis of brain
tumor and other in-vivo diseases. For this purpose, non-linear model-fitting tools
are widely used (such as the LCModel [4], TARQUIN [8], AMARES [6] and
ProFit [5]). The LCModel is widely regarded as the gold-standard fitting tool.
However, some of its drawbacks include: (1) prior knowledge-tuning and long
fitting times, and (2) high estimation error for noisy data. Prior work has also
focused on using machine-learning for metabolite-quantification [2]. In this study,
we present an alternative to the non-linear model fitting using a deep-learning
approach.

2 Methods

A multilayer perceptron(MLP)[7] is a fully-connected, feedforward deep-neural
network comprising of three or more layers of non-linearly activated nodes. The
nodes in each layer are connected to the next layer with certain weights and a
supervised learning technique (backpropagation)[3] is used for training. Weights
are updated after each backward-pass and the error (loss function) is computed



after each iteration. Once the error reduces and achieves convergence, the learn-
ing stops.

In MRSI, The time-domain complex signal of a nucleus is given by:

S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗

2 )dw. (1)

, and the corresponding frequency-domain spectrum is given by S(ω).

Using the MLP-framework, we perform the inverse signal modeling where we
have a training dataset D = (Si(ω), Yi) , i ∈ [1, N ], where N is the total number
of synthetic training spectra. Si(ω) represents the synthetic training spectral
data while Yi represents the corresponding multi-parameter training labels. As a
preliminary study, for our model, we consider the concentrations (with respect to
Creatine) for the major metabolites - NAA and Choline. Therefore, for a given
spectrum Si(ω), Yi = [ NAAi, Choi ].

A five-layered perceptron network was constructed to work as a regressor
mapping the Si(ω) to the Yi. Each layer consisted of 300 neurons with rectified
linear unit (ReLU) activation. The training data consisted of N=1-million spec-
tra with their corresponding parameters. The randomly initialized network was
trained to predict the parameters by iteratively minimizing the squared-error
loss between the predicted and actual parameters using gradient descent with a
learning rate of 1e-3. For faster convergence, Adam optimizer with a Nesterov’s
momentum of 0.9 was employed. As the data is mostly well-behaved, the ’early
stopping’ convergence check was utilized on 0.1

To check the ability of our network to predict the parameters, we use two
test-sets: synthetic and real CSI. The predicted concentrations are denoted by Ŷj .
The corresponding LCModel fitted concentration labels Yj serve as the ground-
truth, j ∈ [1,M ] where M is the total number of test spectra.

Error Calculation. For our experiments, given the estimate Ŷj and the
testing label Yj , the estimate error for the parameter Yj can be calculated as,

Êj = ||Ŷj − Yj ||./||Yj || (2)

Data. A metabolite basis set was generated by using the data provided by the
ISMRM MRS Fitting Challenge 2016. An example has been shown in 1. Over 1
million spectra were simulated with variations in NAA, Cho, Cr concentrations,
macro-molecular baseline, lipids, t2 values (for changes in linewidth) and signal-
to-noise ratio (SNR) to account for changes in spectral quality. For testing, we
acquire a standard phase-encoded 2D brain MRSI data of a healthy human
volunteer on a 3T scanner using a point-resolved spin-echo localization sequence
(PRESS) with voxel size = 10x10x15 mm3, TE/TR=35/1000 ms, spectral width
= 2000 Hz, number of points = 400. For testing purposes, we use 96 spectra
from the inner-region of the brain which serves as the region of interest. For
peak alignment, ppm-cropping and signal-normalization of the training and test
spectra, a pre-processing step is performed.



Fig. 1. An example spectra generated using the basis sets provided by the ISMRM
MRS Fitting Challenge 2016. Using the same basis sets, over 1 million spectra are
generated with variations in NAA, Cho, Cr and other metabolite concentrations along
with changes in macro-molecular baseline, lipids, linewidth (t2) and SNR.

2.1 Results

As a direct comparison of both the MLP and LCModel methods,we use the
synthetic test dataset to generate the error distribution shown in Fig. 2. For
both NAA/Cr and Cho/Cr, the MLP shows a lower median error than the
LCModel. Using the Bland-Altman method [1], we observe a strong correlation
between the LCModel and RF estimates for a sample patient (Fig. 3). Êj for the
same sample patient are within the acceptable range (especially for the major
metabolites such as NAA, Choline and Creatine). Fig. 4 shows the resulting
concentration distribution from both the MLP and LCModel methods for both
NAA/Cr and Cho/Cr. The mean relative errors over the LCModel for NAA/Cr
and Cho/Cr are 0.31 and 0.12 respectively.

Speed: Training time for the synthetic data is 10 minutes using the MLP.
While the LCModel takes 10 minutes for the in-vivo metabolite quantification,
our proposed network, after training, takes only 10 seconds leading to a 60x
improvement in speed.



Fig. 2. Estimation error for different metabolite concentration ratios in a synthetic
spectra test-set. Whiskers span the [min max] values. Median error values are repre-
sented by the red line and are as follows: NAA/Cr MLP = 0.050, LCModel = 0.065,
Cho/Cr MLP = 0.0505, LCModel = 0.050.

3 Discussion and Conclusion

While the synthetic test-results gave a lower error compared to the LCModel,
the in-vivo testing gave a slightly higher relative error. A larger training set with
more training labels and a stronger network would solve this issue by providing
a robust classification of real data. In our proposed method, testing and con-
centration estimation happens in only a few seconds and is considerably faster
than the LCModel fitting. The deep neural-networks may be used directly, or
indirectly by initializing LCModel fits thereby improving their results in the
presence of noise and speeding up convergence.

Future work would involve using a more diverse network with layer-wise
training of spectral features to improve the accuracy of parameter estimation.
Once a framework has been established, further work can be done on combining
these networks with global decisions about predicting spectral quality especially
in the presence of artifacts.

Acknowledgements. The research leading to these results has received
funding from the European Union’s H2020 Framework Programme (H2020-
MSCA-ITN-2014) under grant agreement n 642685 MacSeNet.



Fig. 3. Bland-Altman plots [1] representing LCModel and Multi-Layer Perceptron
(MLP) estimates of spectra for the real CSI dataset. The X-Axis is the mean of
the LCModel and MLP estimate, while the Y-Axis represents the relative error of
the MLP estimate over the LCModel. Bland-Altman plots for: (Left): NAA and
(Right)Choline. Both plots show a good correlation with very few outliers.
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Fig. 4. NAA/Cr and Cho/Cr concentration distribution estimates from
(Left)LCModel fit and (Right) multi-layer perceptron (MLP). The mean rela-
tive errors are 0.31 for NAA/Cr and 0.12 for Cho/Cr.
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