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Abstract. We propose a machine-learning framework for brain temper-
ature estimation in MRSI using human in-vivo data from 1.5T and 3T
scanners. We consider the chemical-shift based method as our benchmark
and compare our results against it. Our framework, based on random-
forest regression, performs a K-fold cross validation on the MRSI dataset
which includes (1) learning the spectral features (including the chemical-
shift) from the subjects; (2) obtaining brain temperature estimates and
computing the error over the corresponding jMRUI-fitted chemical-shift
based estimates. Compared to jMRUI, our method, after training, gives
a low estimation error and a 30-fold improvement in estimation speed
per patient.

1 Purpose

Temperature is an important physiological parameter used in the care and treat-
ment of brain-injured patients. Non-invasive mapping of the brain temperature
using MRSI can help in assessing the effects of conditions such as acute ischaemic
stroke and blood circulation disorders. Prior work has focused on measurement
of brain temperature using the chemical-shift method [10](among other indica-
tors such as proton density[6], relaxation times [8], diffusion coefficient [2]). As
an alternative, we propose a simple yet effective machine-learning approach us-
ing random-forest regression for brain temperature mapping which is evaluated
on human in-vivo data acquired from both 1.5T and 3T scanners. Our training
model accounts for the trends in spectral pattern, in addition to the chemical-
shift, to predict the brain temperature. This is the first application-to the best
of our knowledge- of machine learning towards brain temperature mapping in
MRSI.

2 Methods

Random Forests [4] have been used in MRSI towards classification [1][7] and
quantification [5] of spectral data. These involve multiple forests comprising of a



set of binary trees. For training, splits are created in each tree based on random
subsets of the feature variables and piecewise linear regression is performed over
the input data. The process involves seeking best prediction at every node and
using thresholding to further propagate data points till they reach the end of
the tree. Subsequently the weighted average of the prediction from each tree is
taken to give a single output estimate.

Subjects 10 healthy, male volunteers in the age range of 23-40 years (mean
+/- SD, 30.5 +/- 5.2 years) were invited for scanning on 3 occasions and
underwent 4 MRSI scans each on both 1.5T (PRESS sequenece, TR/TE =
1000/144ms, FOV = 300mm2, 24-step phase encoding in both in-plane direc-
tions) and 3T (semi-LASER PRESS sequence, TR/TE = 1700/144ms, FOV
= 256mm2) scanners during each visit. Data was zero-filled (in k-space), inter-
polated to 32x32 voxels and corrected for eddy and phase correction. Additional
details can be found in [10]. The data was fitted using the AMARES algorithm
([9]) and voxels with poor quality of NAA-fits and/or water resonance distor-
tions were rejected. Total spectra per fold included approximately 1800 training
and 150 test-spectra/subject respectively.

Fig. 1. Pipeline for Machine Learning based brain temperature measurement. Using
the K-fold cross validation approach, this method is repeated using spectra from each
of the 10 subject as test spectra. The temperature measured using the jMRUI-based
chemical-shift method is considered to be the ground-truth. An illustrated image also
shows the brain temperature estimation for a MRS image acquired from a sample
patient (after fitting and pre-quality check.)

In MRSI, The time-domain complex signal of a nucleus is given by:

S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗

2 )dw. (1)



, and the corresponding frequency-domain spectrum is given by S(ω).
As shown in Fig. 1, we aim to perform the inverse signal modeling where

we have a training dataset D = (Si(ω), Ti) , i ∈ [1, N ], where N is the to-
tal number of training spectra from 10 subjects. Si(ω) represents the training
spectral data while Ti represents the corresponding voxel-wise chemical-shift
brain temperature estimates obtained after-fitting(in ◦C) [10]. For the purpose
of ensuring homogeneity, we train spectra that have passed the quality control
measure post-fitting (as mentioned earlier).

The training labels correspond to the temperature evaluated using the for-
mula mentioned in [10] wherein the chemical shift is calculated after fitting the
spectra using jMRUI [9]. Using the dataset from each scanner, we perform a
separate K-fold cross validation evaluation comprising 10 folds (number of trees
= 100 and mTry = 128) wherein each fold we generate a training set from ran-
domly selected 9 subjects and test on spectra, Sj(ω), from the remaining subject

to obtain the brain temperature estimates T̂j . The corresponding chemical-shift
based temperature estimates Tj serve as the ground-truth, j ∈ [1,M ] where M
is the total number of test spectra.

Error Calculation. For our experiments, given the estimate T̂j and the

test temperature Tj for a given subject, the estimate error Êj (in ◦C) can be
calculated as,

Êj = ||T̂j − Tj || (2)

This approach helps us to assess the absolute change in brain temperature es-
timates over the ground-truth values. The corresponding box plots and Bland-
Altman plots [3] for a sample subject are also shown to indicate the difference
in temperature patterns.

3 Results

The temperature-mapping estimates for a sample subject using both the chemical-
shift and the random-forest methods has been shown in Fig. 2. The mean rel-
ative error plots for each subject is shown in Fig. 3. Using the Bland-Altman
method, we observe a strong correlation between the chemical-shift estimates
(using jMRUI) and the random-forest estimates for a sample patient (Fig. 4).
Speed: Training time per fold is 1 minute. While the jMRUI fitting takes 5 min-
utes per subject, our proposed framework, after training, takes only 10 seconds
leading to a 30x improvement in speed.

4 Discussion

In Fig. 2, the temperature difference between the 2 methods are minimal leading
to a low-error. A slightly higher error can be seen around the CSF regions and
at the edges which are most likely due to the variations in spectral pattern in
these areas. Such spectra are fewer in number (post quality-check) and therefore
the framework is insufficiently trained to identify similar spectral patterns. The



Fig. 2. T2-weighted images overlaid with MRSI excitation volumes and brain temper-
ature estimates (in ◦C) for a sample subject using MRSI data from both 1.5T (Left)
and 3T (Right) scanners [10]. The values in brackets represent the estimates using the
chemical-shift method while the other values represent the random-forest based tem-
perature estimates (machine-learning). The spectra shown below each image represent
the acquired (Red) and simulated (Black) corresponding to a set of sample voxels.

Fig. 3. Mean temperature estimate errors (in ◦C) for each of the 10 subjects from the
(Left)1.5T and (Right) 3T scanners. In the 1.5T scanner, one of the subjects exhibited
a higher error compared to the others. Comparing the 2 plots, the 3T spectra being
higher in quality and spatial resolution gives a lower error than the 1.5T data. The
difference, though, is not substantial.



Fig. 4. Bland-Altman correlation plots [3] for a sample subjects using data from (Left)
1.5T and (Right) 3T scanners. The X-Axis represents the average of the chemical-
shift (using jMRUI) and random-forest (RF) estimates while the Y-axis represents their
difference. The 3T data exhibits a better correlation than the 1.5T data.

outliers observed in the corresponding Bland-Altman plots shown in Fig. 4 also
correspond to these regions. The mean-error plots, shown in Fig. 3, correspond
to an overall mean error of 0.29 ◦C for the 1.5T data and 0.202 ◦C for the
3T data (due to better spectral quality and resolution). Estimates for Subject 3
exhibited a slightly higher error for the 1.5T data but this issue wasn’t present
while evaluating the corresponding 3T data.

Future work would involve performing extensive phantom studies for a better
assessment between the machine-learning and chemical shift methods. More ro-
bust frameworks involving deep-learning based methods can be used to improve
the accuracy of temperature estimation.
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