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Abstract

This paper describes an extension to the Monocu-
lar Simultaneous Localization and Mapping (MonoSLAM)
method that relies on the images provided by a combined
high resolution Time of Flight (HR-ToF) sensor. In its stan-
dard formulation MonoSLAM estimates the depth of each
tracked feature as the camera moves. This depth estima-
tion depends both on the quality of the feature tracking
and the previous camera position estimates. Additionally,
MonoSLAM requires a set of known features to initialize the
scale of the map and the world coordinate system. We pro-
pose to use the combined high resolution ToF sensor to in-
corporate depth measures into the MonoSLAM framework
while keeping the accuracy of the feature detection. In prac-
tice, we use a ToF (Time of Flight) and a high-resolution
(HR) camera in a calibrated and synchronized set-up and
modify the measurement model and observation updates of
MonoSLAM. The proposed method does not require known
features to initialize a map. Experiments show first, that the
depth measurements in our method improve the results of
camera localization when compared to the MonoSLAM ap-
proach using HR images alone; and second, that HR images
are required for reliable tracking.

1. Introduction
The simultaneous localization and mapping (SLAM)

problem consists of finding the position of an object (e.g.
robot, camera, etc.) in a map, while simultaneously build-
ing the map as the object moves [9, 5]. Although SLAM
has been widely studied in robotics and computer vision,
it remains challenging due to the ill-posed nature of the
problem, especially when online performance is desired. A
large variety of SLAM approaches have been proposed that
differ both in the type of sensors used (e.g onboard laser
scanners [26, 22] or cameras [8, 19, 12, 21]) and in the ac-
tual algorithms used to estimate the map and sensor posi-
tions [23]. Given their availability and flexibility, the use
of cameras has become very popular. One reference algo-

rithm that solves SLAM from image data is the Monocular
SLAM (MonoSLAM) proposed by Davison et al. [8]. In
the MonoSLAM approach, the map is composed of 3D fea-
tures that are estimated (up to scale) from a calibrated cam-
era and image correspondences in two consecutive views.
The estimation of the map and the camera position are al-
ternated. The problem is formulated in terms of two dy-
namic systems that model the motion of the camera, the
measurement (imaging) process and the noise. To find the
current state of the systems an Extended Kalman filter is
used. Several extensions to the original method have been
proposed, for example, that employ stereo cameras [17, 20]
to recover a more precise estimation of the 3D position of
the features. In this paper, we investigate an extension to
the MonoSLAM algorithm for a combined High-Resolution
Time of Flight (HR-ToF) camera. As opposed to the above
stereo approaches, the use of direct depth measures pro-
vided by the ToF camera enable our method to work under
non-textured surfaces and poor lighting conditions.

In the last few years, there have been increasing advance-
ments in the development of Time of Flight (ToF) cam-
eras. ToF devices have faster frame rates (∼40 fps) than
laser scanners (∼2 fps) [26, 22] and are therefore an in-
teresting option to estimate 3D maps from a moving sen-
sor. Recently, methods have been proposed that use ToF
technology to estimate the pose of the camera in order to
create 3D maps [6, 16, 24, 18]. For the most part these
algorithms work off-line or use only the ToF camera in-
formation. We are instead interested in an online SLAM
approach that takes advantage of the ToF high frame rates.
Unfortunately, current ToF devices have low-resolution and
precise feature tracking for online SLAM solutions such as
that in [8] cannot be achieved.

To cope with the low resolution, new cameras that
capture both color intensities and depth information per
pixel [1, 2, 3, 4] are currently under development, though
no yet commercially available. The combined sensor is
often simulated using a ToF camera and a standard high-
resolution RGB camera in stereo set-up [16, 11]. Calibra-
tion of such set-up suffices to provide RGB-d images. In
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a) HR-ToF sensor b) High-resolution image c) ToF depth image d) ToF amplitude image e) ToF offset image
Figure 1: High-resolution ToF camera and the four images simultaneously captured per frame.

order to achieve real-time performance while maintaining
high quality results, we propose to extend the MonoSLAM
algorithm to use such an integrated HR-ToF sensor, com-
posed of a ToF and a regular high-resolution (HR) cam-
era. After the registration step we are able to incorporate
the real-time depth information of the ToF camera in to
the MonoSLAM framework, while reliably tracking the fea-
tures in the high resolution camera. The result of the pro-
posed HR-ToF SLAM are a 3D sparse map in metric co-
ordinates (no longer up to-scale) and the trajectory of the
camera.

The experiments in section 5 show the performance of
the proposed method applied to the HR-ToF in comparison
to the MonoSLAM approach applied to high-resolution im-
ages (HR-SLAM), and to our method using only the low-
resolution offset images of the ToF camera. In particular,
we measure the camera localization error w.r.t. the ground
truth position of the camera obtained with an optical mo-
tion capture system. As expected, the availability of direct
depth measures improves the localization precision and ac-
curacy, while the high-resolution image guarantees a long-
term tracking.

In the section 2 we recall the functioning principles of
the ToF cameras and briefly describe the registration proce-
dure to simulate the combined HR-ToF sensor. The prob-
lem statement and method are explained in sections 3 and 4
respectively.

2. Combined HR-ToF Sensor

A Time of Flight (ToF) camera emits an intensity mod-
ulated sinusoidal signal of infrared (IR) light and uses a
CCD/CMOS sensor to detect the reflected light. According
to the time-of-flight principle, the phase between emitted
and received sinusoidal signals is proportional to the dis-
tance between the light source and the reflecting surface.
Thus, by measuring the phase, amplitude and the offset of
the received signal is possible to calculate a depth value for
each pixel. Given that the signal is periodic, the modulation
frequency limits the maximum distance which the camera
can measure to half period of the modulated signal (e.g.
from 50cm to 7.5m) [7, 13].

The ToF camera provides at least two images: the depth

(Fig.1-c) and the amplitude (Fig.1-d). The depth image
gives the measured distance between the reflecting surface
and each pixel in the sensor. The amplitude image cap-
tures at every pixel the amount of IR light that was reflected
back to the camera. The amplitude serves as a quality mea-
sure of the depth, as poor quality measures arise from low-
amplitudes. In addition, the ToF camera may also provide
an offset image (Fig.1-e), which is usually used as gray-
scale image. The amplitude and the offset images can be
used to calibrate the intrinsic and external parameters of the
camera as well as the distortion parameters. The calibration
procedure is equivalent to the used for high-resolution cam-
eras, e.g. moving a known calibration pattern (chessboard)
in front of the camera and optimizing the intrinsic and dis-
tortion parameters over a video sequence.

In order to simulate the behavior of a combined sensor
capable of measuring reflected light and depth, a high res-
olution and a ToF cameras are mounted in a rigid stereo
set-up, as illustrated in Figure 1-a. The relation between
the two views is then found by performing a standard stereo
calibration with the amplitude or offset image, moving a
checkerboard in front of the cameras. To give a depth esti-
mate to each pixel in the high resolution image, we use an
inverse weighted distance interpolation. This method gives
a depth value λ(p) to pixel with coordinates p based on a
weighted average of M available depth values λi at neigh-
boring positions pi (1 ≤ i ≤M ) :

λ(p) =

M∑
i=0

wi(p)∑M
j=0 wj(p)

λi. (1)

where weights wi are computed as wi(p) = 1
dist(p,pi)d

(we
use d = 1). The number of neighbors M is determined by
the number of depth values being projected to a fix window
size around p, 30 × 30 in our experiments. This interpola-
tion allows us to handle the uneven distribution of the depth
values when projected to the high resolution image.

3. Problem Statement: Feature-based SLAM
Our goal is to solve the SLAM problem using the com-

bined HR-ToF sensor described above. We follow the stan-
dard formulation of feature-based SLAM based on dynamic



systems modeling the motion of the sensor and the mea-
surement process. In [8], image measurements are obtained
by establishing feature correspondences in the images over
time. Depth measurements are computed using the camera
geometry (calibration) and its estimated motion. We intro-
duce an extension, where the depth estimates are directly
obtained from the combined HR-ToF sensor. The extension
includes the depth in the state vector, and modifies the mea-
surement model and the observation update (see details in
section 4). In the following we state the SLAM problem
formally and explain the extension to depth measures.

SLAM is the problem of localizing an object (here a
camera) in a map that is being simultaneously built. In the
dynamic system formulation of SLAM [9, 5, 8], the position
of both the sensor (camera) x and the map Y are modeled
to be state vectors that evolve over time. The map is consid-
ered to be a collection of N features, whose 3D positions at
time k are denoted yi,k and grouped in a vector:

Yk =
(
y1,k y2,k ... yN,k

)>
. (2)

The state vector of the camera xk in the k-th frame is com-
posed of the camera 3D position rw, orientation (in quater-
nions) qwc, velocity vw and angular velocity ωc, that is:

xk =
(
rw qwc vw ωc

)>
, (3)

where superscripts indicate the world (w) and camera (c)
coordinate systems.

The evolution of the two state vectors, the camera posi-
tion xk and the map Yk, is modeled in terms of two dynamic
systems. First, the camera motion model that determines
the state vector of the camera xk at instant k by means of
a function f . Second, the measurement model that models
the measurement process by means of a function h that re-
lates the actual feature positions Yk to their measurements
Zk =

(
z1,k z2,k ... zN,k

)>
. The two dynamic sys-

tems take the form:

xk = f(xk−1, uk) + wk, (4)
Zk = h(xk, Y ) + vk. (5)

Eq. 4 predicts the camera position at time k as a function
of its previous state xk−1, an optional input uk and a mo-
tion disturbance wk modeled with a zero-mean Gaussian
distribution with covariance Qk. In Eq. 5, h(xk, Y ) mod-
els the measurement process, and vk is the measurement
disturbance modeled again with a zero-mean Gaussian dis-
tribution with covariance Rk. Notice that in the case of the
combined HR-ToF sensor, h needs to take account of the
depth measures, as explained in section 4.

Given the above formulation, the SLAM problem be-
comes that of finding the estimates to the full state vector,
composed of the camera and the map state vectors [x̂k Ŷk]>

where â is used to denote variable estimates.

4. Proposed Method: HR-ToF SLAM
One common solution to the problem is to estimate

the state vector by means of an Extended Kalman Filter
(EKF) [27]. Kalman based algorithms compute the esti-
mate of the state vector describing the camera x̂k and the
feature positions Ŷk in two recursive steps: a prediction
(time-update) and a correction (measurement-update). As
an auxiliary outcome of the Kalman filtering, a covariance
matrix P is obtained representing the uncertainty of each
estimation:

P =

(
Pxx PxY
PY x PY Y

)
. (6)

In sections 4.1 and 4.2 we describe the updates, the instan-
tiation of the motion-model and the extension introduced to
the measurement model in order to consider the combined
HR-ToF images.

4.1. Time Update

As described in [8], the time-update upgrades the cam-
era position at time k given conditions at time k − 1. More
precisely, the updated state of the camera x̂k|k−1 is first pre-
dicted based on its motion during previous frames. The co-
variance matrix corresponding to the camera position Pxx
is updated accordingly. The time update is resumed in the
following equations:

x̂k|k−1 = f(x̂k−1|k−1, uk), (7)

Pxx,k|k−1 = ∇f · Pxx,k−1|k−1 · ∇f> +Qk, (8)

where ∇f is the Jacobian of function f evaluated at time
k − 1. The explicit dynamic model of the camera motion is
x̂k|k−1 = f(x̂k−1, uk) =

rwk|k−1
qwck|k−1
vwk|k−1
ωck|k−1

 =


rwk−1 + (vwk−1 + ∆vw) ·∆t
qwck−1 × q((ωck−1 + ∆ωc) ·∆t)

vwk−1 + ∆vw

ωck−1 + ∆ωc

 ,

(9)
where q((ωck−1 + ∆ωc) · ∆t) is the angle change due to
angular velocity in the quaternion representation. The ve-
locities change per time step ∆t is modeled as:

∆vw = aw ·∆t, (10)
∆ωc = αc ·∆t, (11)

where the acceleration aw and the angular acceleration αc

are modeled as processes of Gaussian distribution and zero
mean (refer to [8] for details).

4.2. Observation Update

The observation-update describes the new position of
both the camera x̂k|k and the map Ŷk given newly ob-
served feature positions Zk in the combined HR-ToF im-
ages at time k, and the updated x̂k|k−1. The positions



are upgraded according to the error in the prediction Zk −
h(x̂k|k−1, Ŷk−1) and the optimal Kalman gain matrix Wk:[

x̂k|k
Ŷk

]
=

[
x̂k|k−1
Ŷk−1

]
+

Wk

[
Zk − h(x̂k|k−1, Ŷk−1)

]
, (12)

Pk|k = Pk|k−1 −Wk · Sk ·W>k , (13)

where Sk is the innovation or residual covariance matrix
representing the uncertainty of the prediction at time k (see
section 4.2.1 for computation details). Notice that here, Zk
is the collection of measurements obtained with the com-
bined HR-ToF sensor, i.e. zi,k = (ui vi λi)

>, where λi is
the depth value at image coordinates ui, vi, and 1 ≤ i ≤ N .

In order to relate the 3D features Yk to the image (2D)
and depth measurements contained in Zk, the pinhole cam-
era model with an invertible distortion model is used. The
position of the features in the image plane is computed by
projecting the expected positions h(x̂k|k−1, Ŷk−1) of the 3D
features Yk−1 given the updated camera position x̂k|k−1 and
using the intrinsic and distortion parameters. Let hci be the
result of the prediction h(x̂k|k−1, ŷi,k−1) in the camera co-
ordinate system for a feature i, with 1 ≤ i ≤ N , then the
coordinates of the projection of ŷi,k−1 are:

uu = u0 −Ku ·
hcix
hciz

, vu = v0 −Kv ·
hciy
hciz

, (14)

where (uu, vu) is the image coordinates of the features
without distortion, (u0, v0) are the coordinates of the prin-
cipal point, and (Ku,Kv) are the focal lengths in each di-
rection. An invertible distortion model [8] is used, so that
the distorted (real) image positions (ud, vd) are found with
the expressions:

ud = uu − u0√
1 + 2 · k1r2

+ u0, vd = vu − v0√
1 + 2 · k1r2

+ v0,

(15)
where r =

√
(uu − u0)2 + (vu − v0)2 is the radial dis-

tance from the center of the image using undistorted co-
ordinates.

Once the coordinates of the projections of each feature
are computed, the error between the expected and the mea-
sured positions Zk − h(x̂k|k−1, Ŷk−1) are used to correct
the Kalman filter prediction applying Eq. 12 to update the
camera position x̂k and map Ŷk.

The difference to the state vectors and measurements of
[8] is summarized in the following table:

MonoSLAM HR-ToF SLAM
zi,k = (ui vi)

>
zi,k = (ui vi λi)

>

hi = (udi vdi)
>

hi = (udi vdi λi)
>

where λi =
√
hcix

2 + hciy
2 + hciz

2 is the depth of the image
position (ui, vi) associated to feature i.

4.2.1 Innovation Formula

The innovation formula is used to update (correct) the
Kalman filter model, that is to calculate the Kalman Gain
Wk and the innovation Sk in Eq. 12 and Eq. 13. The correc-
tion is computed from the difference between the measured
and predicted positions, the Jacobians of the projections∇h
and the measurement noise Rk. Recall from Sect. 4.2 that
the innovation covariance matrix Sk represents the uncer-
tainty of the predictions (xk|k−1 and the set of hi) at time k
and depends on the uncertainty of both the camera xk and
map Yk (contained in P ) as well as the measurement noise
Rk. The updates to the EKF are computed as follows:

Wk = Pk|k−1 · ∇h> · S−1k , (16)

Sk = ∇h · Pk|k−1 · ∇h> +Rk. (17)

Given the block form of P in Eq. 6, the 3× 3 sub-matrices
of Sk associated to feature i, i.e. Sk,i can be obtained using:

Sk,i =
δhi
δx

Pxx
δhi
δx

>
+
δhi
δx

Pxyi
δhi
δyi

>
+
δhi
δyi

Pyix
δhi
δx

>

+
δhi
δyi

Pyiyi
δhi
δyi

>
+Rk,i. (18)

To calculateRk,i we model the noise associated to the mea-
surement of each feature. The model takes into account that
several sources of noise affect the HR and ToF cameras.
First, we model the noise of the HR image position Ruv
with a linear radial function to take account the radial dis-
tortion, such that the noise increases when the measurement
is further away from the center of the image. The image po-
sition noise model is then:

Ruv = σ2
uv ·

(
1 +

r

max r

)
, (19)

where σuv determines the minimum level of noise (here as-
signed to the image center) and the factor r

max r controls the
increase in the noise factor as the coordinates u and v go
away from the center.

Second, the noise of the measurement depth measure-
ments is modeled as a linear function with respect to the
depth itself, as far away depth measures are usually noisier.
Similar to 19 the model also takes into account the radial
error. However, this time the linear model reflects the con-
centration of the infrared light in the middle of the image
that causes noisier measurements in the borders of the im-
age. Additionally, we use the amplitude image provided by
the ToF camera as final indicator of the measurement noise,
as it is known that measurements computed from low ampli-
tudes (when the amount of reflected light is low) are noisier.
In practice, we employ a function σλ = σmin + (1−Auv),
where σmin ensures a minimum level of noise and Auv is
the corresponding amplitude value. Thus, the depth noise



model is resumed in the expression:

Rλ = σ2
λ

(
1 + · λ

maxλ
· r

max r

)
. (20)

Finally, we assume independence between the noise of
the depth information and the image position. The resultant
noise matrix R has the form:

Rk,i =

 Ruv 0 0
0 Ruv 0
0 0 Rλ

 (21)

Using the proposed noise model, the innovation matrix
Sk can be computed. In particular, the 3×3 block elements
of the Jacobian in Eq. 18 take the form:

δhi
δyi

=


δuu

δyix

δuu

δyiy

δuu

δyiz
δvu
δyix

δvu
δyiy

δvu
δyiz

δλ
δyix

δλ
δyiy

δλ
δyiz

 . (22)

The first two rows in the expression above are the same used
in [8], however the third row contains the derivatives of the
new measurement value λ, namely:

δλ

δyix
=

yix
||yi||

,
δλ

δyiy
=

yiy
||yi||

,
δλ

δyiz
=

yiz
||yi||

where, ||yi|| =
√
y2ix + y2iy + y2iz . Using this noise model

and computing Wk and Sk according to Eqs. 16 and 17, the
EKF is updated and the system is ready for iteration k + 1.

4.3. Feature extraction and depth initialization

In standard monocular approaches to SLAM, the initial-
ization of the features depth is difficult, as it is not possible
to measure the real distance from a feature to the camera.
The usual way to initialize the features is to fix the depth
of a reduced set of features, and to find a depth estimate for
any other feature taking into account the motion of the cam-
era. In the particular case of MonoSLAM [8], the depth of a
new feature is initialized as a probabilistic uniform distribu-
tion on a finite ray passing through both the projection of the
feature in the image plane and the origin of the camera coor-
dinate system. This probability distribution is updated with
each new frame using a particle filter that weights each dis-
crete value of depth according to the intersection of the cur-
rent and previous backprojected rays, under the estimated
motion of the camera. In the case of PTAM [12], an ini-
tial translational motion is used to recover the depth of the
initial features using stereo disparities.

In our case the initialization becomes easier as the prob-
abilistic estimation is simply replaced with the depth mea-
surement provided by the ToF device in the location where
image features are detected. We use SIFT [15] to detect the
features in the high-resolution image and use the first po-
sition of the camera as the origin of the world coordinate
system.

5. Experimental Validation
We recorded a video sequence of the camera moving in

an office environment, where the distance of the camera to
the objects ranges from 1 to 3 meters. We used a Point-Grey
Flea2 HR camera (640×480) and a PMD CamCube2 (204×
204) ToF camera in a stereo setup as shown in Figure 1-a.
The cameras are calibrated and synchronized.

In order to validate the performance of our approach we
measure the error of the camera position. To capture the
ground truth trajectory for the evaluation we place infrared
markers on the camera and track them (using a commercial
Tracking system). The markers are registered to the camera
coordinate system with an additional calibration step that
uses a checkerboard equipped with infrared markers. The
resultant ground truth trajectory provides the position and
orientation of the camera at each frame.

We measure the error of the estimated camera trajecto-
ries with respect to their ground truth. Three trajectories
are compared. The first is obtained with the proposed HR-
ToF SLAM method. The second one is the result of our
method when using only the ToF images (the HR image is
replaced by the low-resolution offset image), here named
ToF SLAM. Finally, the third trajectory is the estimated
pose of the camera obtained with the MonoSLAM algo-
rithm on the high resolution images (HR-SLAM). As shown
in Fig. 2, the proposed HR-ToF SLAM method (blue line)
follows very closely the ground truth (error near to zero).
ToF SLAM (green line) rapidly looses track due to the dif-
ficulty of reliably tracking features in the low-resolution
images and to infrared specular reflections. Finally, HR-
SLAM (red line) is able to keep the track but leads to a less
accurate trajectory. Error peaks observed in the HR-ToF
SLAM and HR-SLAM are explained by fast camera move-
ments. The overall mean and standard deviation errors (us-
ing the magnitude of the error in the three axis) over the se-
quence with 380 frames are reported in Table 1. The camera
trajectory using the proposed extension with the combined
HR-ToF camera has the lowest average error (∼2.2 cms).
Despite the low resolution of the offset images, our method
applied to the ToF images along (∼2.4 cms) still has lower
average error compared to the MonoSLAM with the high-
resolution camera (∼4.6 cms). The 3D error in the graph is
calculated at each frame in the camera coordinate system,
in order to observe the error in the depth (Zaxis), and in the
horizontal (Xaxis) and vertical (Yaxis) axes.

To start building the maps we initialize the depth of the
detected features in the first frame using the values provided
by the ToF data (c.f . section 4.3). This is done for the ini-
tialization of the map in the three compared methods in or-
der to avoid the need of knowing an object dimensions for
the HR-SLAM. We manually select four features in the first
image to create a common world coordinate system. The
chosen features are required by the HR SLAM, as it needs



Figure 2: 3D error (Xaxis,Yaxis and Zaxis) in cms for each camera pose of the trajectory of the HR SLAM (red line), HR-ToF
SLAM (blue line) and ToF SLAM (green line) versus the ground truth.

HR-ToF (cms) ToF (cms) HR (cms)
Xaxis 2.966± 3.312 2.426± 2.723 4.212± 5.187

Yaxis 1.632± 2.509 3.824± 6.628 6.657± 4.090

Zaxis 2.015± 2.190 1.018± 0.913 3.138± 1.895

Total 2.204± 2.670 2.450± 3.422 4.669± 3.724

Table 1: Mean and standard deviation of the camera local-
ization error using the proposed approaches HR-ToF SLAM
and ToF SLAM, and the monoSLAM algorithm applied in-
dividually to the high resolution (HR) camera.

a reasonable number of features for initialization. Although
not required in our approach, we also provide the same four
features to HR-ToF and to ToF SLAM for the sake of eval-
uation. Finally, we choose the world coordinate system to
be the first frame position of the camera, this allows us to
relate the camera coordinate system to the ground truth.

Snapshots in Fig. 3 show the difference between the un-
certainty of the feature position estimates. The proposed
HR-ToF method has less uncertainty than MonoSLAM ap-
plied to the high-resolution video. The difference is ex-
plained by the use of the ToF depth measurements.

6. Discussion and Future Work
We have presented a new online SLAM approach which

uses a combined sensor gathering images from a high-
resolution camera registered to a ToF device. The com-
bined HR-ToF sensor includes valuable depth information

Figure 3: Snapshot of SLAM results for frame 380 of the
sequence, based only on the HR camera (top) and on the
combined HR-ToF sensor (bottom). The uncertainty in the
depth data is displayed as ellipsoids. Lower uncertainties
are achieved with the method HR-ToF SLAM.

while allowing for high-precision tracking. We address the
SLAM problem by extending the measurement model and
the innovation formulas of the MonoSLAM algorithm. Our



results show that these extensions improve the map uncer-
tainty and the localization error of the camera.

Future work directions include detecting 3D features and
using 3D tracking (scene-flow) methods to take full advan-
tage of the depth image. In the short term, we would like to
improve the registration using a combined stereo and depth
calibration [10] method that models the depth error with B-
spline or polynomial functions [14]. This is expected to re-
duce the noise of the depth measurements. Finally, it would
be interesting to use the proposed model with an Unscented
Kalman filter (UKF) [25] instead of Extended Kalman fil-
ter, since the UKF converges better when the measurements
have a non-Gaussian distributed noise as is the case of the
ToF depth measurments.
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