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Reconstructing the Esophagus Surface from Endoscopic Image Sequences 

 
Introduction 

The esophageal cancer is a highly lateral disease 
affecting a significant percentage of population in United 
States and in Western World [2],[8]. Recent 
technological developments provide powerful tools such 
as white light endoscopy, narrow-band endoscopic 
imaging (NBI) and auto-fluorescence imaging (AFI), 
which allow for advanced visualization of the malignant 
tissue. Current gold standard protocol for screening and 
surveillance of the esophageal cancer, known as 
Gastrointestinal (GI) endoscopy, consists of visual 
examination of the esophagus surface under endoscopic 
guidance and acquisition of biopsies from 
endoscopically visible lesions. The first time screening is 
followed by surveillance endoscopies at regular intervals 
in order to track the evolution of the malignant tissue. 
This protocol requires identification and retargeting of 
the examined regions in the surveillance endoscopy for 
potential biopsy acquisition. However, a method for 
accurate localization and retargeting of the examined 
regions under endoscopic guidance is currently not 
available. Creating a 3D visualization of the esophageal 
surface can serve the endoscopist as a roadmap and 
provide a significant support for retargeting during the 
procedure. 
In this work, we explore the possibility of creating a 3D 
patient-specific visualization of the esophagus surface 
from endoscopic images by performing a 3D 
reconstruction of the tissue surface. Reconstruction of 
the esophagus surface from endoscopic videos involves 
several challenges: the esophagus tissue presents big 
deformations which can greatly modify the appearance 
of the tissue; moreover, several factors affect the quality 
of the images, e.g. liquid inside the esophagus generates 
specularities and fast motion of the camera leads to 
blurred images.  
In this paper, we investigate the feasibility of using 
Monocular Simultaneous Localization and Mapping 
(MonoSLAM) [1] for 3D reconstruction of the 
esophagus surface in the presence of these challenges. 
We identify the necessary modifications for its in-vivo 
application and demonstrate that the MonoSLAM is a 
promising framework for 3D visualization of esophageal 
tissue. 
3D surface reconstruction is a well-known research area 
in computer vision community. In the medical field, 
there has been an increasing interest in 3D surface 
reconstruction from endoscopic image sequences [4],[5], 
[6],[7],[12],[13],[9]. Stoyanov et al. [9] present a method 
for depth recovery from stereo laparoscopic images of 
deformable soft-tissue. Mourgues et al. [5] propose a 
correlation-based stereo method for surface 
reconstruction and organ modeling from stereo 
endoscopic images. Quartucci et al. [7] apply a shape-

from-shading technique to estimate the surface shape by 
recovering the depth information from the surface 
illumination. Zhou et al. [13] reconstruct the 3D 
structure using a Circular Generalized Cylinder (CGC) 
model which decomposes the reconstruction into a series 
of 3D circles forming a tube that models the esophagus. 
Recently, a number of techniques have been published 
which apply feature-based techniques for 3D 
reconstruction in endoscopy [4],[11],[12]. Wang et al. 
[11] track Scale Invariant Features (SIFT) [3] in the 
endoscopic sequence and use Adaptive Scale Kernel 
Consensus (ASKC), for robust motion estimation. In 
[12], Wu et al. also track SIFT features and use an 
iterative factorization method for structure estimation. 
Mountney et al. [4] present a technique for building a 3D 
map of the scene for minimally invasive endoscopic 
surgery while recovering the camera movement based on 
SLAM from a stereo endoscope.  
In this paper we propose a MonosSLAM based approach 
for 3D surface reconstruction from monocular 
endoscopic images. First, SIFT features [3] are detected 
in the first frame. Then, tracking of these features in 
consecutive frames is performed by an intensity based 
method using normalized sum-of-squared differences 
similarity measure [1],[6]. The MonoSLAM algorithm is 
applied on the tracked features in order to create a 3D 
map of the observed esophagus surface and localize the 
endoscope (6 DoFs) within this map simultaneously. 
The rest of the paper is organized as follows: the 
proposed approach and our results are presented in the 
Method and Experimental ResultsError! Reference 
source not found. Sections respectively. The current 
state and potential improvements for future work are 
discussed in the discussion Section. 

Method 

The goal of this paper is to present a method to estimate 
the esophagus surface from a monocular endoscopic 
image sequence, in order to provide a 3D visualization 
tool to the endoscopist. The 3D surface estimation from 
a monocular image sequence can be performed within 
the MonoSLAM framework. This approach aims to 
localize the camera in the 3D surface map, while 
simultaneously estimating the map.  
The standard SLAM algorithm is designed to estimate a 
rigid scene and mostly applied to indoor environments. 
To be able to build a consistent map, giving the location 
of the features in the 3D space, these features have to be 
robustly detected and tracked. In the case of endoscopic 
image sequences the environment has practical issues 
which make the tracking difficult. First, the scene is 
deformable. Second, the images can be blurred as a 
consequence of water or fast movement. In addition, the 
features in an indoor environment are representative 
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patches which are generally the high frequency variation 
of the image, like edges. In contrast, the endoscopic 
images of soft-tissue mainly consist of homogeneous 
regions and lack the discriminative features. This makes 
the task of feature tracking more difficult.  
Our method starts with detecting the SIFT features [3], 
which are distinctive local patches of the image. These 
features are tracked in the consecutive frames using a 
template-matching algorithm with the normalized sum-
of-squared difference (NSSD) similarity measure [1],[6]. 
The NSSD is computed as: 
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where ),( jiI  and ),( jiJ  denote the intensity values at 
image location ),( ji  for the initial template patch (from 
the first frame) and for the patch in the current frame, 
respectively. I  and J  are the mean intensity values of 
the patches I  and J . Iσ  and Jσ  represent the standard 
deviations of intensities of the patches I  and J , and n  
denotes the width and height of the patch. The 
displacement ),( ji ddd =

r
 with the maximum NSSD 

measure is used to compute the new location of the 
tracked patch in the current frame. In the feature tracking 
task, the local image patches are warped using the 
transformation matrix obtained from the current 
estimation of the camera position in the scene in order to 
correct the projective deformation produced by the 
different viewpoint angles induced by camera motion 
[1]. To select the most reliable patches for the 
MonosSLAM algorithm, we perform a thresholding on 
the SIFT features based on their confidence value. We 
also guarantee that the detected and tracked feature 
patches do not overlap. 
One standard way to solve the feature-based SLAM 
problem is to use the Extended Kalman Filter (EKF). In 
this formulation the map is composed of a series of 
features (also known as landmarks). The problem 
consists of estimating the position of these landmarks in 
a global coordinate system while localizing the camera 
within the map. In the EKF-SLAM, the position and 
orientation of the features and the camera are represented 
using a state vector, denoted as kx . The camera motion 
and the updates of the feature locations are estimated at 
each time frame using a dynamic model: 

( ) kkkk wuxfx += − ,1  (1) 
( ) kkk vyxhz += ,  (2) 

where kz  denotes the measurement of the position of the 
feature at time k , f  is a non-linear transformation of 
the camera location determined as a function of its 
previous location and ku  is the input of the model, in 
this case is the estimated acceleration from an impulse 
force applied in each time-step modeled by a zero mean 
Gaussian distribution, h  is the transformation of the 
feature position in the image as a function of the camera 
and feature position in the map, and kw  is the motion 
disturbance modeled as a zero-mean Gaussian 

distribution with covariance kQ . Similarly, kv  is the 
observation error modeled as kw  but with covariance 

kR . Formally, the estimated state vector x̂  is composed 
of the camera state vector kx̂  and the feature state 
vector { }Niyi ...0,ˆ ∈ , where N is the number of features. 
Furthermore, we associate a covariance matrix P  to the 
state vector x̂  (see equation 3). P  reflects the 
uncertainty of the current estimate of the camera and 
map, but also represents the relation between the camera 
position and feature map. 
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where kx̂ is the camera state vector which is composed 
of the 3D position and orientation and iŷ  is the state 
vector of feature i  which consists of the 3D position and 
the estimated orientation of the patch.  

( )TCWWCW
k vqrx ω=ˆ , (4) 

( )TYWY dry =ˆ  (5) 
The equation 4 shows the components of the used 
camera state vector kx̂  where Wr  is the 3D position 
vector, WCq  is the orientation quaternion. Wv and Cω  
are the velocity vector and the angular velocity vector, 
relative to a fixed world frame W  and camera frame C , 
respectively. We assume that the camera has constant 
acceleration and angular acceleration between time 1−k  
and k . The equation 5 shows the components of the 
feature state vector ŷ  where WYr is the 3D position 
vector and Yd  is a unitary vector which describes the 
orientation of the feature. 
The SLAM algorithm is implemented through two 
recursive steps which are composed of a prediction 
(time-update) and a correction (measurement-update). 
The time-update is computed using equations 6 and 7, 
and represents the update of the camera position in the 
feature map at time 1−k . 

),ˆ(ˆ 1|11| kkkkk uxfx −−− =  (6) 

k
T

kkxxkkxx QfPfP +∇⋅⋅∇= −−− 1|1,1|, , (7) 

where f∇  is the Jacobian of f  evaluated at 1|1ˆ −− kkx . 
The observation-update is computed using equation 8 
and 9, and represents the update of the camera position 
and feature positions using the observed features in the 
image at time k . 
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where h∇ is the Jacobian of h  evaluated at 1|ˆ −kkx  and 
1ˆ −ky . kS  is the innovation (or residual) covariance 

matrix and kW is the optimal Kalman gain matrix. 
The used observation model h  in this approach is the 
pinhole projection and radial distortion of the camera in 
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order to incorporate the high distortion of the endoscope 
camera to the model. Refer to [1] for further details. 

Experimental Results 

The patient data for the experiments is acquired during 
an endoscopic examination using Olympus Exera II 
endoscope with NBI image enhancement. NBI provides 
an enhancement of the contrast in the mucosal pattern 
and submucosal vasculature [10]. Thus, it enables more 
structured visualization of the tissue allowing for more 
robust feature detection and tracking. 
In our experiments, first, the internal camera and the 
distortion parameters of the endoscope are computed 
using the method presented in [1]. The radial distortions 
present in the NBI image sequence are then corrected 
using the estimated distortion parameters. Our proposed 
approach based on MonoSLAM is applied on the NBI 
patient data consisting of 31 consecutive frames.   
To initialize the SLAM algorithm is necessary to provide 
some known features which are selected manually in 
order to define the real scale of the scene. We use two 
known features and estimate their position in the map by 
projecting the image point using a distance of 20 cm. 
from the camera to the scene.  
An example frame from the NBI sequence is illustrated 
in Figure 1a. The example image with the tracked 
features is demonstrated in Figure 1b. The red boxes 
show the tracked features and the blue boxes the 
estimated features in the image. Figure 1c and 1d 
demonstrate the reconstructed surface map from the 
frontal and site view, respectively. 

a) b) 

c) d) 
Fig. 1: Surface reconstruction results. An example image 
of a) the NBI patient data, b) with tracked features.  
Reconstructed surface from c) frontal and d) site view. 

Discussion 

In this work, we investigated the feasibility of 
MonoSLAM for 3D surface reconstruction from 
monocular NBI sequences. Our results demonstrate that 
MonoSLAM is a promising tool for surface 
reconstruction in NBI endoscopic images sequences. 
However, our study shows that there are some 
challenges for further improvement, which need to be 
addressed before MonoSLAM can be applied on 
endoscopic images in-vivo and in-situ. The tissue 

deformation present in the esophagus can greatly modify 
the appearance of the tissue causing a failure in the 
feature tracking. Moreover, due to the specular 
reflections and blurring caused by the esophageal surface 
or fast camera motion the image quality can be very 
poor. Addressing these challenges requires a more robust 
approach for the detecting and the tracking of the 
landmark features. 
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