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Abstract

In this paper we present a method to iteratively cap-
ture the dynamic evolution of a surface from a set of point
clouds independently acquired from multi-view videos. This
is done without prior knowledge on the observed shape and
simply deforms the first reconstructed mesh across the se-
quence to fit these point clouds while preserving the local
rigidity with respect to this reference pose. The deformation
of this mesh is guided by control points that are randomly
seeded on the surface, and around which rigid motions are
locally averaged. These rigid motions are computed by iter-
atively re-establishing point-to-point associations between
the deformed mesh and the target data in a way inspired
by ICP. Our method introduces a way to account for the
point dynamics when establishing these correspondences, a
higher level rigidity model between the control points and
a coarse-to-fine strategy that allows to fit the temporally in-
consistent data more precisely. Experimental results, in-
cluding quantitative analysis, on standard and challenging
datasets obtained from real video sequences show the ro-
bustness and the precision of the proposed scheme.

1. Introduction
Multi-camera setups allow to recover shapes from the

observed scenes by exploiting the spatial redundancy in the
observed images. However, even when dealing with tem-
poral sequences, most methods concentrate on providing a
visually convincing reproduction of the shapes by treating
each time frame as a separate static multi-view 3D recon-
struction problem. Many algorithms are quite successful at
solving this problem [14] and allow to build precise pho-
tometric models. However, independent shape models are
just a fraction of the information one might want to extract
from multiple videos. For example, capturing body mo-
tion or editing geometry in a temporally consistent way are
two applications which require to also capture the motion
and deformation of the reconstructed surfaces. This require-
ment has spawned a number of works targeted at exploiting

Figure 1. Results on the Flashkick sequence. The top row shows
a wireframe versions of the deformed mesh we recover overlaid
on the original image from the second camera. The bottom row
shows shaded models of the same mesh.

the temporal redundancy in the acquired data to provide a
dense surface tracking over time.

Many of these works tackle surface tracking by es-
tablishing cross parametrizations between shapes indepen-
dently reconstructed at adjacent time frames. They usually
do so by first matching sparse visual and geometric features
and then propagating this information over the surface us-
ing smoothness constraints. The strength of these methods
is that the motion can be estimated without any assump-
tion on the observed geometry. However, these approaches,
being recursive by nature, make it difficult to prevent the in-
cremental build-up of tracking errors. Model-based strate-
gies perform better at providing long term accurate track-
ing. Among them, the methods that deform a reference
surface over time are of particular interest as their output
is by nature temporally consistent. Although deforming
a reference surface limits the range of possible deforma-
tions and prevents the handling of topology changes, recent
works [8, 20, 10] have demonstrated the efficiency of this
strategy.

The algorithm we introduce in this paper uses a photo-



consistent mesh, e.g reconstructed from the first frame, as
a reference model and deforms it across time to fit inde-
pendently reconstructed sets of points and normals. The
deformation framework we use was presented in [15] for
interactive modelling purposes and relies on a number of
constrained vertex positions to infer a global deformation
preserving local differential coordinates. In contrast to
interactive modelling, where those constraints are manu-
ally given and are noise free, we compute them automati-
cally from challenging data that exhibits fast motion, large
deformations, and topology changes. Our method is in-
spired by the Iterative Closest Point algorithm as it itera-
tively re-estimates point associations between the deformed
mesh and the target data, and averages rigid motions lo-
cally around control points randomly seeded on the surface.
The displacements of these control points are used as con-
straints in the mesh deformation framework. The nature of
our input data makes achieving robust and reliable perfor-
mance challenging, and has motivated the ideas presented in
this paper. First, we account for the temporal nature of the
problem by penalizing dynamically unlikely point associa-
tions. Second, we introduce a way of diffusing information
between control points to limit the occurrence of degenerate
mesh configurations. Third, we propose a coarse-to-fine ap-
proach where an increasing number of control points is pro-
gressively reseeded to recover higher frequency geometric
details. The whole approach is purely geometric and stays
temporally local as it reseeds control points independently
at each time frame.

In the remainder of this paper we overview related
works, detail our contribution, and present the associated
results before concluding.

2. Related Work
One of the major challenges when capturing the defor-

mation of a surface from multiple videos resides in the spar-
sity and the non uniformity of the distribution of visual fea-
tures on the surface. Starck and Hilton [17, 16] add edge
information to complement corner detectors. Bradley [6]
adresses the similar problem of marker-less garment capture
by using the boundaries of the garment as anchors to guide
the establishment of a consistent mapping between inde-
pendently reconstructed surfaces. The use of some geomet-
ric features has also been explored. Starck and Hilton [16]
use the uniformly distributed geodesic-intensity histogram,
then regularize the possible assignments using a MRF on
the graph of the mesh. Varanasi [19] matches mesh extrem-
ities identified as the extrema of the geodesic integral [11],
then regularizes the deformation by using the preservation
of local differential coordinates and adds a morphing step
to handle topology changes. However, as all these methods
diffuse the information from these sparse features to the rest
of the surface, they need to assess the reliability of these

sparse matches to avoid wrong associations. In particular,
geodesic features require special care as soon as topology
changes occur.

Introducing a strong model reduces the sensitivity to po-
tential wrong sparse matches. A number of algorithms [5, 8,
20] use a reference surface as model. Naveed [1] propagates
the sparse features information over the mesh using level
sets of harmonic functions. The works by Aguiar, Vlasic
and Gall [8, 20, 10], closely related to our approach, deform
a template surface while enforcing local rigidity by preserv-
ing Laplacian coordinates. In [8], a coarse volumetric mesh
is first deformed using visual features and silhouette con-
straints, then higher frequency deformations are estimated
locally using depth maps computed from stereo. In [20, 10]
a skeleton model is first fitted in the visual hull, then the
corresponding shape estimation is refined by inflating the
surface in order to match the silhouettes. These works in-
terestingly show that sparse visual features are not impera-
tively required to recover a convincing approximation of the
surface deformation. However both skeleton and volume
preservation are very restrictive assumptions that limit the
extensibility of these approaches to more complex scenes.

The presented method relies on a much weaker, purely
surface based model. It uses purely geometric informa-
tion as input data: clouds of points and normals. It is in-
spired by the Iterative Closest Point algorithm[7, 4] that
was initially proposed to register rigid motions of solid ob-
jects. Although many algorithms have build on these ideas
to address the non-rigid case [9, 2, 3], to the best of our
knowledge none applies to large deformations as observed
when capturing body motions. The method by Stoll [18]
is the closest to ours but does not deal with temporal se-
quences and uses manually defined constraints to initialise
the deformation, which drastically limits outliers in point
associations. In contrast, most of the ideas we present in
this paper are motivated by the need for robustness with re-
spect to these wrong point assignments: we penalize dy-
namically unlikely associations, average rigid motions lo-
cally and introduce a higher level rigidity model between
control points. The coarse-to-fine procedure also plays a
role in limiting the sensitivity to wrong associations but is
mostly motivated by the need for precision when fitting the
target data. These contributions are detailed in the follow-
ing section.

3. Method
The presented approach belongs to the tracking by de-

formation class of methods which deform the mesh dis-
cretization of a reference surface over time. This reference
mesh is defined as a graph (ν, τ) and a position function
X0 : ν 7→ R3, where ν is the set of vertices and τ the set
of triangles. As our method does not modify the connectiv-
ity, the problem limits to re-evaluating the position function
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(c) The positions are averaged with a
weighted sum, yielding the proposal
position function X′ and the weight
function W .

Figure 2. Computing the proposal position function on the mesh

across time.
Our algorithm has similarities with the ICP algorithm:

it iteratively re-evaluates point to point correspondence be-
tween a target point cloud and a mesh which is deformed
to minimize the distances between associated points. These
two steps of ICP can be seen as follows: first a proposal po-
sition function is computed from the associations between
the deformed mesh and the data. Then this function is reg-
ularized by forcing the deformation field on the object to
be a rigid motion. In this paper, both of these steps are re-
defined to the case of large dynamic deformations. In sub-
section 3.1, we describe the computation of the proposal
position function and how to account for the point dynam-
ics over the time. The regularization scheme is introduced
in subsection 3.2.

The proposal position function is regularised by forcing
the deformation field to be locally as close as possible to
a rigid motion. The way locality is defined on the mesh
is central in that respect. Control points are seeded on the
surface. Around each of them, a rigid motion is averaged
on a neighbourhood of fixed geodesic radius. Each of these
rigid motions is used to predict a new position for associated
control point but also for its neighbours. By computing a
weighted average of all these predictions, a target position is
obtained and fed to a mesh deformation framework. These
two steps are iterated until the control points stop moving.
In subsection 3.3 a coarse to fine approach is presented: few
control points are first defined to align the deformed mesh
with the target points, then more are re-seeded to capture
higher frequency details in the target data.

3.1. Computing the proposal position function

The goal in this part of the method is to compute a pro-
posal position function X ′ : ν 7→ R3 and the associated
weight function W : ν 7→ R which will be used to assess
the quality of the information in the rest of the algorithm. In

that respect, our method is different from the original ICP
algorithm as we adopt the proposal position function point
of view instead of limiting us to a more restricted point-to-
point mapping. Moreover, instead of finding for each ver-
tex of the deformed template the closest point in the target
point cloud, we proceed the other way around: we iterate
through the target point cloud and have each of its vertex
contribute its position to the closest point in the current ap-
proximation of the deformed mesh. In the common situa-
tion where the tracked surface self intersects and produces
a topology change, this means that the unmatched parts of
the deformed reference surface simply do not get any con-
tribution and remain with a zero weight function, thus not
generating erroneous constraints in the rest of the computa-
tion. We also found this approach to be better at getting out
of local minima as every point from the target point cloud
has an influence on the deformation, and not only the points
closest to the current approximation of the deformed mesh.

Similarly to many works which have extended on the
original ICP algorithm, the presented method does not es-
tablish point to point correspondence by looking for the
closest point only, but instead looks for the closest compati-
ble point. Both the compatibility and the weighting function
can benefit from different types of data input. In their sim-
plest form they will just use the Euclidean distance between
the points. Our method defines a compatibility function al-
ready used in some ICP variants and prevents associations
between points whose normals form an angle superior to
45◦.

We account for point dynamics by keeping a Kalman Fil-
ter for each vertex of the deformed mesh. We can use its
state covariance matrix to define a Mahalanobis distance to
the predicted point position and compute a weight for each
association. This limits the influence of dynamically un-
likely pairings and is done at a very minimal cost as the
filters are only updated at the end of computations for each
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(a) From left to right: reference pose, result
for the previous frame, current approxima-
tion, target surface

(b) prediction of ci and Ni knowing
RTt−1

j

(c) prediction of ci and Ni knowing RT0
j

Figure 3. Diffusing the rigid motions between neighbouring control points

time frame.

3.2. Regularizing the proposal function

The problem here is to iteratively redefine control points
to guide the mesh deformation. In the following paragraphs
we detail the mesh deformation framework we use, the way
of seeding the control points, and how rigid motions are
averaged and diffused around them.

Our regularization scheme relies on ”as rigid as possible”
deformation using Laplacian mesh processing as presented
in [15]. The original paper deals with constraints manually
defined by the user on control points, from which the de-
formation is diffused to the rest of the mesh by trying to
preserve local differential coordinates. The Laplacian ma-
trix is computed from the reference mesh using cotangent
weights[13] . The coordinates of the mesh we are look-
ing for are stored in the |ν| × 1 vectors x,y, z. The target
positions for the control points ci, or constraints, have their
coordinates stored in the |νc|×1 vectors xc,yc, zc and their
associated weights in the diagonal matrix Wc (weight 0 if
the point is unconstrained). The problem can be written for
each coordinate (here for x) as a least-squares system:

argmin
x

‖Lx− δ‖2 + ‖Wc(x− xc)‖2 (1)

where the δ term is computed from the original values of
the Laplacian Lx0,Ly0,Lz0 modified to account for local
rotations of the surface with respect to the reference pose.

Seeding control points As stated in the beginning of this
section, our method averages rigid motions on the neigh-
bourhoods of control points seeded on the surface. These
control points ci are created on the surface along with
neighbourhoods Ni of a maximal geodesic radius until the
whole surface is covered. To preserve the temporal locality
of the approach the seeding process takes place indepen-
dently at each time frame. In other words we do not keep

the same control points all along the time sequence because
this would amount to making it part of the model.

Diffusing rigid motions On the neighbour-
hood Ni around control point ci, the information
{(X ′(v),W (v))|v ∈ Ni} allows to compute an aver-
age rigid motions RT0

i between the reference pose X0

and X ′ using the Horn algorithm[12]. From this rigid
motion we predict a target position of the control point
t0
i|i = RT0

i (c
0
i ). Neighbouring control points cj also

predict target positions t0
i|j = RT0

j (c
0
i ) for ci using their

own averaged rigid motions. As shown in Figure 3 we
also average rigid motions RTt−1

i between the result of
the previous frame Xt−1 and X ′ and obtain the associated
tt−1
i|j = RTt−1

j (ct−1
i ). For each of these predictions a

residual error ei|j is computed as the average squared
distance between the points of Ni transformed by RTj

and the target point cloud. In a way similar to particle
based Bayesian techniques, we use these errors to weight
all these predictions and get for each control point ci a
set of (t0

i|j , wi|j) and (tt−1
i|j , wi|j), where the weights are

computed according to Equation 2.

wi|j = e−
ei|j
l2 (2)

where l is the mean edge length of the reference mesh in its
original pose.

This procedure roughly amounts to predicting the posi-
tion of Ni and evaluating the corresponding posterior error
before actually deforming the mesh. Using both the refer-
ence pose and the previous frame to predict these positions
allows, on one hand, to locally return to the reference model
when the last frame approximation starts to yield more error
than the reference pose, and on the other hand to rely more
on the previous frame when tracking error is small. The tar-
get position of the control point ti which will be used as
constraint in the xc,yc, zc vectors in Equation 1 is finally
defined as the weighted average of all these predictions as
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shown in Equation 3.

ti =
1∑

weights

[
w0

i|it
0
i|i + wt−1

i|i tt−1
i|i +

r
∑
j∈Ni

(w0
i|jt

0
i|j + wt−1

i|j tt−1
i|j )

]
(3)

where r is a coefficient balancing the weight of the neigh-
bours in the computation, and 1P

weights is normalization
using the sum of all applied weights.

3.3. Coarse to fine approach

Experiments confirmed that the range of recoverable de-
formations is limited when using a fixed radius for the
neighbourhood, and thus a roughly constant number of con-
trol points. Refining the deformation by progressively re-
seeding denser sets of control points is much more efficient
at recovering finer details. On meshes representing a hu-
man, we used three level of details defined by the average
number of control points they created on the mesh: 12, 40
and 180. However, 12 random control points are definitely
not enough to deform the mesh from its position at time 0
to a decent approximation at time t, and also means loos-
ing most of the information recovered at time t − 1. Thus
at the lowest level of resolution, the mesh is deformed with
respect to the result of the previous frame. This allows to
roughly align the approximation for time t − 1 with the
observed data at time t, before returning to deforming the
mesh from its initial pose with 40 then 180 control points.

4. Results
We performed both qualitative and quantitative analysis

of our method on a number of data sequence which were
available to us. In the reminder of the section we discuss in
details our experimental evaluations.

4.1. Qualitative experiments

We tested our approach using the data provided by
J.Starck and A.Hilton who acquired it within the Surfcap
project[17]. We present our results on the 5 sequences that
were made available to us: Flashkick, Kickup, Head, Lock
and Pop. Each of these sequences consists of a Hip Hop
dancer performing fast moves that create large deforma-
tions and topology changes with respect to the initial sur-
face. We used the reconstructed photo consistent geometry
from Starck and Hilton’s graph cut method as target point
clouds for our method. As these meshes had each more
than 100k vertices, we down-sampled them to create set of
points and normals with approximately 10k vertices. The
deformed reference surface was also a down-sampled ver-
sion of the first frame of each sequence and had roughly 5k

vertices. All the sequences were run using the presented
method. The approximated surface for time t − 1 was first
deformed using 12 control points to align it with the point
cloud at time t. Then the regular algorithm deforming the
reference surface was run using 40 then 180 control points.

We show the results of our method on the five sequences
in Figures 4 and in the supplementary video. The top row
of each subfigure shows the deformed reference mesh over-
laid as wireframe on the original image data from one of
the camera of the system, showing that although silhouette
constraints are not explicitly enforced, the deformed mesh
correctly reprojects in the images. In the bottom rows, ren-
dered versions of the same deformed reference mesh are
shown .

4.2. Quantitative experiments

In this section we present a quantitative analysis of the
results obtained by our method. Our analysis is based on the
measure used by Aguiar et al. in [8] and consists of comput-
ing the silhouette reprojection error normalized by the size
of the original silhouette. As our data can exhibit severe
topology changes, leaving some parts of the deformed tem-
plate unmatched, this measure is more pertinent than look-
ing for a residual distance between the deformed mesh and
the target geometry. Even though we do not explicitly force
the surface to fit the silhouettes, we show in Figures 5 that
this silhouette re-projection error stays reasonably constant
and low over the entire sequences. In the associated video
we show the output as the overlay of the mesh structure of
the deformed template on top of the original images from
one of the cameras.

To demonstrate the contribution multi-resolution ap-
proach brings to the final results we depict in Figure 6 the
difference between the results obtained when using a small
number of control points (∼ 30) and the results obtained
when the multi-resolution approach is applied. As the ref-
erence pose has a bent left knee, using a coarse control
structure only results in the unwanted preservation of this
fold, while the coarse-to-fine approach correctly fits the tar-
get mesh. The same measure of mean camera silhouette
re-projection error confirms significant improvements.

4.3. Discussion

Although our method has performed consistently well on
these data sets, with the same set of parameters and no man-
ual intervention, we would like to discuss its limitations and
failure cases.

The first limitation is the inability to handle arbitrary
topology changes. This problem is inherent to the use of
a reference mesh as model and is shared by most other ap-
proaches, with the notable exception of [19] who handles
them at the cost of long term accuracy in the tracking. Self-
intersections can to some extend be handled, as they only re-
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(a) Head

(b) Lock

(c) Kickup

Figure 4. Frames from the Head, Lock and Kickup sequences. The top rows of each subfigure show the overlay of the green wireframe
version of the deformed mesh we recover on the original image from the second camera. The bottom rows show the deformed mesh alone.

6



(a) Silhouette reprojection error: From left to right: original image, silhouette, deformed template, silhouette error.
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(b) Lock

0 50 100 150 200 250
time

0.0

0.2

0.4

0.6

0.8

1.0

p
ix

e
l 
e
rr

o
r 

in
 %

 o
f 

th
e
 o

ri
g
in

a
l 
si

lh
o
u
e
tt

e

Cam Error

(c) Pop
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(d) Kickup
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(e) Head
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(f) FlashKick

Figure 5. Silhouette reprojection error as a percentage of the original silhouette: each colour represents a camera. Note that the reprojection
error stays small and stable in spite the fact that we do not force explicitly silhouettes to be fitted.

Figure 6. Improvements brought by the coarse to fine approach on the Flashkick sequence. From left to right: initial reference mesh;
target mesh; deformed mesh with used ∼ 30 control points(note that the left knee is bent following the constraint form the reference
mesh model); deformed mesh with the proposed multi-resolution method(the prior imposed by the reference mesh was suppressed by the
multi-resolution strategy); silhouette re-projection error for 30 control point case, shown in blue, and the error in case of multi-resolution,
shown in green, demonstrate that using control points at multiple resolutions results in more precise capturing of the surface deformations.

sult in some part of the model being temporarily unmatched
in the observation. However, the splitting or creation of ge-
ometry that happens when a hand gets out of a pocket for
example can not be addressed with our approach.

The second limitation lies in the iterative nature of our
algorithm. Our method basically iteratively fits the input
point clouds with a reference mesh. If there are very large
errors in one frame of the input geometry, the mesh can
be deformed to a state from which the tracking won’t be
able to recover. However, the neighbour prediction mech-
anism helps to recover from localised reconstruction errors
by propagating information from well matched parts of the

deformed mesh to erroneous areas. Accounting for noisy
input data constitutes a direction for future work.

Finally, the computational cost of our method is com-
pletely dominated by the neighbour prediction and weight-
ing mechanism. For each predicted patch position, a nearest
neighbour search is conducted for each of its vertices in the
target geometry. As our implementation did not use any
space partitioning strategy, this was quite long and resulted
in computation times of roughly 5min/frame.
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5. Conclusion
We presented a method for capturing the dynamic evo-

lution of a surface from independent multi-view surface re-
constructions. The object reconstructed in the first frame is
used as reference model and fitted to the points and normals
of the independent reconstructions obtained at each time
frame. Dealing with fast motion, large deformations and
topology changes makes it difficult to extend robustly the
ideas of ICP. We propose a novel algorithm that meets this
challenge and performs consistently well in various data
sequences. It is based on randomly seeded control points
around which rigid motions are locally averaged. Three
main contributions are to be distinguished in the overall ap-
proach: the accounting for point dynamics when establish-
ing model to data correspondences, the higher level rigid-
ity model between the control points and the coarse-to-fine
strategy that allows to fit the temporally inconsistent data
more precisely.
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