
IEEE Copyright Notice

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Pre-print of article that will appear at the 2018 IEEE International Conference on Robotics
and Automation (ICRA 2018).

Please cite this paper as:

M. Bui, S. Zakharov, S. Albarqouni, S. Ilic and N. Navab, ”When Regression Meets Manifold
Learning for Object Recognition and Pose Estimation”, IEEE International Conference on Robotics
and Automation (ICRA) , 2018.

ar
X

iv
:1

80
5.

06
40

0v
1

 [
cs

.C
V

]
 1

6
M

ay
 2

01
8

When Regression Meets Manifold Learning for Object Recognition and
Pose Estimation

Mai Bui1, Sergey Zakharov1,2, Shadi Albarqouni1, Slobodan Ilic1,2 and Nassir Navab1,3

Abstract— In this work, we propose a method for object
recognition and pose estimation from depth images using
convolutional neural networks. Previous methods addressing
this problem rely on manifold learning to learn low dimensional
viewpoint descriptors and employ them in a nearest neighbor
search on an estimated descriptor space. In comparison we
create an efficient multi-task learning framework combining
manifold descriptor learning and pose regression. By combin-
ing the strengths of manifold learning using triplet loss and
pose regression, we could either estimate the pose directly
reducing the complexity compared to NN search, or use
learned descriptor for the NN descriptor matching. By in depth
experimental evaluation of the novel loss function we observed
that the view descriptors learned by the network are much
more discriminative resulting in almost 30% increase regarding
relative pose accuracy compared to related works. On the other
hand, regarding directly regressed poses we obtained important
improvement compared to simple pose regression. By leveraging
the advantages of both manifold learning and regression tasks,
we are able to improve the current state-of-the-art for object
recognition and pose retrieval that we demonstrate through in
depth experimental evaluation.

I. INTRODUCTION

3D object pose estimation and instance recognition is
a widely researched topic in the field of computer vision
with many application possibilities in augmented reality and
robotics. Successfully recognizing a robot’s surroundings and
inferring object poses is crucial for tasks as robotic grasping.
Here we offer a simple solution, the only requirement being
a depth camera attached to the robot.

Even though deep learning has shown significant success
in most computer vision tasks, its performance directly
corresponds to the training set given and usually relies on
very large datasets to perform and generalize well. However,
there is an increasing availability of 3D models, especially
in industrial applications, which can easily be used to create
large amounts of synthetic images for training such models.
Color or texture information might not always be available
for CAD models and is difficult to include, while considering
for example illumination changes as well. Realistic depth
images are easier to obtain, and although they are usually
noisy and can contain missing depth values, they incorporate
more valuable information for object pose estimation and are,
therefore, used as a main data source in our work. To this
end, we rely on simulated depth renderings, assuming 3D
models of the objects of interest are available.

1 Department of Informatics, Technichal University Munich, Germany
2 Siemens AG, Munich, Germany
3 Whiting School of Engineering, Johns Hopkins University, USA

(a) Obtained using direct pose regression.

(b) Obtained using our multi-task learning framework.

Fig. 1: By using a multi-task learning framework, we are
able to improve feature descriptors learned for object pose
estimation. Depicted here is the feature visualization using
left: PCA and right: t-SNE [1] for five objects of the
LineMOD [2] dataset.

Previous methods working on object pose estimation have
often used nearest neighbor search methods on hand-crafted
[2] or learned feature representations [3], [4]. They describe
the object seen from the particular viewpoint to retrieve the
closest pose for a given test image and are able to predict
poses with great accuracy. However, when including more
objects, the complexity of those methods usually do not scale
well. On the other hand, direct regression approaches offer
great capabilities, but are not yet robust enough for real-
world applications.

Inspired by the work first introduced by Wohlhart and
Lepetit [4], we propose a multi-task learning pipeline, which
combines the strengths of manifold learning and regression,
to learn robust features from which the object’s pose can be
inferred. Fig. 1 depicts an example feature visualization ob-
tained through regression and, in comparison to our proposed
method, showing a significant improvement in discrimination
in the feature space. Thus, we are able to combine the gen-
eralization capabilities shown in manifold learning tasks and
the variability of regression into a deep learning framework
for object pose estimation. To this purpose, we introduce a
new loss function, which includes both manifold learning

and regression terms. Therefore, we analyze how the two
tasks influence each other and show that each task can be
beneficial to one another in the context of estimating object
poses.

To summarize, our contributions described in this paper
include the following:
• introducing a loss function using a combination of

regression and manifold learning to create an end-to-end
framework for object recognition and pose estimation,

• improvement in accuracy and feature robustness com-
pared to the current baseline methods, and

• a detailed analysis and comparison of nearest neighbor
pose retrieval and direct pose regression.

In the next sections, a detailed description of the proposed
pipeline is given. Moreover, besides reporting the results of
our method, a detailed analysis on comparing regression and
nearest neighbor pose retrieval using feature descriptors is
conducted. By using a combination of manifold learning
and regression, we were able to significantly improve the
regression performance as well as to create more robust
feature descriptors compared to the baseline methods. Thus,
we improved both aspects: nearest neighbor pose retrieval
and direct pose regression with our framework and obtain a
large accuracy boost compared to the related works.

II. RELATED WORK

Detecting objects and estimating their 3D pose is a
well researched topic in the field of computer vision [5],
[6], [7], [8], [9], [10]. To explain a few, Brachmann et
al. [8] use random forests to predict object labels as well
as object coordinates from which the pose can then be
inferred. In [9] the authors extend their approach by using
an auto-context framework and exploiting the uncertainty
over object labels and coordinate probabilities to improve
their method. Whereas Krull et al. [10] use a convolutional
neural network (CNN) on top to score estimated object
probabilities, coordinates and depth images compared to the
ground truth and optimize accordingly. Other approaches
have proposed to use 2D view-specific templates for object
detection and pose estimation. By computing handcrafted
feature representations for a known set of views, most
similar matches can easily be found for a given template
to infer its class and pose [11]. To improve this pipeline
several approaches have proposed to use learning-based
methods, instead of relying on handcrafted features, to
infer more descriptive and robust feature representations for
object pose retrieval. Therefore, as those are most related
to our work, we will first describe some descriptor learning
approaches, before introducing methods working on direct
pose regression.

Descriptor Learning. For instance, Kehl et al. [3] use
convolutional auto-encoders to learn feature descriptors from
RGB-D image patches. Zamir et al. [12] use a siamese net-
work architecture to compute features based on object-centric
viewpoint matches for camera pose estimation. Further, they
show that the resulting model generalizes well to other tasks,

including object pose estimation. Still, this method as is
has not been shown to generalize to multiple objects in a
cluttered environment.

Wohlhart and Lepetit [4] propose a descriptor learning
approach using CNNs, which is most related to our work.
By enforcing the Euclidean loss between images from similar
views to be close and from different objects to be far away
both the object’s identity and pose information can be stored
in highly separable feature descriptors. The pose for a given
test image can then be estimated by nearest neighbor lookup
to find the closest corresponding pose of the found object.
One of the main drawbacks of this method is that in-plane
rotations are not considered by the pipeline, which is rarely
the case in real-world applications.

Zakharov et al. [13] include in-plane rotations to the above
mentioned method and improve it by introducing an updated
triplet loss function in which the margin term value is set to
be dynamic depending on the type of the negative sample,
as opposed to the former method. However, this method, as
well as the former one, relies on nearest neighbor search,
the complexity of which grows with respect to the number
of objects.

Pose Estimation. Several state-of-the-art methods on ob-
ject pose estimation propose using pixel to 3D point corre-
spondence prediction based on random forest and iterative
pose refinement using RANSAC [14]. Due to the recent
successes of this work, it has been extended and optimized
in several related methods [15], [16].

In comparison, more recent methods have introduced
direct regression approaches, e.g. PoseNet [17], where a
CNN is employed to regress the position and orientation of
a camera given an RGB image. While this method is able
to infer the camera’s six degrees of freedom (DoF) in an
end-to-end fashion using only an RGB image as input, the
reported accuracy is still significantly lower than the reported
results based on point correspondence prediction.

Based on the analysis of previous methods, we propose
to combine the strengths of both regression and manifold
learning to obtain separable feature descriptors and to lever-
age the advantages of both methods for the problem of object
recognition and pose estimation.

III. METHODOLOGY

Our methodology, depicted in Fig. 2, starts with training a
CNN model for a given training set Strain = {s1, . . . , sN} =
{(x1, c1,q1), . . . , (xN , cN ,qN)} consisting of N samples.
Each sample s comprises a depth image patch x ∈ Rn×n

of an object, identified by its class c ∈ N, together with
the corresponding pose vector, q ∈ R4, which gives the
orientation represented by quaternions.

Our objective is to model the mapping function φ : X →
Q, thus for a given input x the predicted pose vector q̂ is
obtained as

q̂ = φ(x;w), (1)

where w are the model parameters. While the primary
objective is to obtain an accurate pose estimation for any

Fig. 2: Given an input depth image patch xi, we create corresponding triplets (xi, xj , xk) and pairs (xi, xj) to optimize our
model on both manifold embedding, creating robust feature descriptors, and pose regression. Obtaining either a direct pose
estimate q or using the resulting feature descriptor for nearest neighbor search in the descriptor database.

unseen data, having a well clustered feature space is of
high interest as well and can be used to identify the objects
class, if needed. To achieve this, we model the problem as
a multi-task learning, namely pose regression and descriptor
learning. Thus the overall objective function can be written
as

LMTL = (1− λ)Lpose + λLd, (2)

where λ is a regularization parameter. Lpose and Ld are
the objective functions for the pose regression task and the
descriptor learning task respectively.

A. Regression

During training, our CNN model maps a given input x to
a lower dimensional feature vector f(x) ∈ Rd, i.e. the output
of the last fully connected layer before it is further utilized
to regress the pose using the following loss function:

Lpose = ‖q−
q̂
‖q̂‖
‖22, (3)

where ‖·‖2 is the l2-norm and q is the corresponding ground
truth pose.

B. Descriptor Learning

To create robust feature descriptors, object identities as
well as poses should be well differentiable in the feature
space, creating a compact clustering of object classes as well
as a respective pose mapping within the clusters. As a second
requirement, since we mainly train our model on synthetic
images, we need to map synthetic and real images to the
same domain to ensure generalization to real applications.
Here, we use the triplet and pairwise loss, as introduced in
[4]. Overall, we obtain the following loss function Ld for
descriptor learning:

Ld = Ltriplets + Lpairs. (4)

As depicted in Fig. 2, our model is trained on a set of triplets
(si, sj , sk) ∈ T , where sample si (anchor) corresponds to the

current image xi and sj (puller) is chosen so that the image
corresponds to the same object ci viewed from a similar
pose qj . However, sk (pusher) is chosen so that the image
xk corresponds either to a different object ck or the same
object ci, but viewed under a very different pose qk. The
resulting loss, Ltriplets, defined over a batch of triplets is
formulated as

Ltriplets =
∑

(si,sj ,sk)∈T

max

(
0, 1− ||f(xi)− f(xk)||22

||f(xi)− f(xj)||22 +m

)
,

(5)
pulling viewpoints under similar poses close together and
pushing dissimilar ones or different objects further away. As
appeared in [13], m corresponds to a dynamic margin defined
as:

m =

{
2 arccos(|qi · qj |) if ci = cj ,

γ else,
(6)

where γ > 2π. The dynamic margin ensures that objects of
different classes get pushed farther away while the margin
for the same objects depends on the angular distance between
the current viewpoints qi and qj .

In addition, the pair-wise loss Lpairs is used to push
together the sample feature descriptors of the same object
under the same or very similar pose but with different
backgrounds or coming from different domains (synthetic
and real). The pair-wise loss is computed on pairs (si, sj) ∈
P and is defined as:

Lpairs =
∑

(si,sj)∈P

||f(xi)− f(xj)||22, (7)

f(xi) being the feature descriptor extracted from the neural
network for image xi.

IV. EXPERIMENTAL SETUP

In this section, we first describe how the dataset is
generated by combining simulated object renderings with
background noise and real images taken from the LineMOD

dataset [2]. Then we give an overview of our experimental
setup before demonstrating and evaluating the results.

A. Dataset Generation

Since both former closely related feature descriptor learn-
ing and pose estimation methods used the LineMOD dataset
for their experiments, we also chose this dataset to be able
to evaluate the algorithm’s performance.

The LineMOD dataset consists of fifteen distinct 3D mesh
models and respective RGB-D sequences of them together
with the camera poses. These data are used to create training
set Strain, database set Sdb, and test set Stest each consisting
of samples s = (x, c,q), where x stands for the image patch,
c and q are the corresponding class and pose, respectively.
The training set Strain as its name suggests used exclusively
for training. The database set Sdb is used for the evaluation
phase, where its samples are used to construct a descriptor
database used for the nearest neighbor search, whereas Stest

is used exclusively in the evaluation phase.
First, we render each of the fifteen objects from different

viewpoints covering their upper hemisphere, depicted in Fig.
3a. Here, following previous methods [4], [13], viewpoints
are defined as vertices of an icosahedron centered around the
object. By repeatedly subdividing each triangular face of the
icosahedron additional viewpoints and, therefore, a denser
representation can be created. In our case, the training set
Strain sampling is achieved by recursively applying three
consecutive subdivisions on the initial icosahedron structure
(see Fig. 3a). Furthermore, following the method of [13], we
add in-plane rotations at each vertex position by rotating the
camera at each sampling vertex from -45 to 45 degrees using
a stride of 15 degrees.

As a next step, we extract patches covering the objects
from both rendered images and real images coming from
the depth sequences. The bounding box is defined by the
bounding cube size of 40 cm3 centered on the object. All
the values beyond the bounding cube are clipped. Upon
extraction of the patches, each of them is being normalized,
mapped to the range of [0, 1] and stored together with its
identity class c and pose q resulting in a single sample s.

The training set Strain is then generated by combining all
the samples coming from the rendering and 50% of the real
data from the depth sequences (resulting in approximately
18% of the real data in Strain). The selection of the real
samples is performed by choosing the most similar poses to
the ones used for synthetically rendered samples. The rest
of the real samples are used to generate the test set Stest.
The database set Sdb contains only the synthetic part of the
Strain.

1) Treating Rotation-invariant Objects: Four out of fifteen
objects of the LineMOD dataset have a property of rotation-
invariance and introduce an ambiguity to the generation of
triplets needed for the triplet classification loss. For instance,
the bowl object is fully rotation-invariant, whereas the cup,
eggbox and glue object are only rotation-invariant around a
single plane or, in other words, symmetric. These four objects
need to be treated differently from the rest. This comes from

(a) Regular (b) Symmetric (c) Rotation-inv.

Fig. 3: Sampling points for different objects types: vertices
represent camera positions from which the object is rendered.

the fact that, in the case of rotation-invariant objects, samples
representing different poses might look exactly the same,
which can result in a faulty triplet required for the triplet
loss function.

To solve this problem, we render only a limited amount
of poses for those objects, such that every image patch
is unique. Sample vertices for different object types are
demonstrated in Fig. 3b and 3c. Since both training set
Strain, and test set Stest also include real samples we also
omit ambiguous poses in them and only consider those that
are close to the ones coming from the renderer. Note that
this sampling also results in an unbalanced percentage of real
images included for each object. To consider this, we create
datasets of five, ten and fifteen objects and only include
the rotation-invariant objects when using the full LineMOD
dataset of fifteen objects.

2) Data Augmentation: The synthetic samples coming
from the renderer have a black background, which makes
them very different from the real samples. Since we have a
limited amount of the real data available and cannot cover
all the possible poses, we augment the training samples
with a background noise whenever the real sample for this
pose is not available. Augmented samples are included in
the training set Strain during training in an online fashion,
generating different noise patterns for each anchor sample.
The noise type we use for our pipeline is purely synthetic and
is present in both [4] and [13] showing the best performance
among synthetic noise types. It is referred to as fractal noise
and is based on a combination of several octaves of simplex
noise first introduced in [18]. It provides a smooth non-
interrupting noise pattern and is often used for landscape
generation by game developers.

B. Implementation Details

With this training and testing setup, we extract patches of
size n = 64. We then train our CNN, where, if not stated
otherwise, we use the network architecture introduced in [4],
except we set the feature descriptor size to d = 64. As
it is mentioned in [4] at some point increasing the feature
descriptor size does not improve the methods performance
anymore. As for regression we found a similar effect during
our experiments, in which we experienced d = 64 to be
a good trade-off between nearest neighbor and regression
performance. During our experiments, we set γ = 10.0
for the dynamic margin. The network was trained on a
Linux-based system with 64GB RAM and 8GB NVIDIA
GeForce GTX 1080 graphics card. All experiments are

implemented using TensorFlow1 with Adam optimizer and
an initial learning rate of 1e−3, while the batch size was set
to 300.

C. Baseline Models

To analyze not only our method, but the effect of multi-
task learning, i.e. regression and learning robust feature
descriptors together, we report the results compared to the
baseline method [13]. Here we train on the loss function
Ld to compare to the results obtained by nearest neighbor
pose retrieval, abbreviated as NN. However, in comparison,
the baseline in their original work uses RGB-D data and
includes normals as additional information whereas we only
use depth information. Nevertheless, the authors provided us
with an implementation of their pipeline written in python so
that we were able to run all our experiments and compare the
results using depth images only. In addition, we conduct our
own baseline for regression only (R) and report the results.
Furthermore, to evaluate our method, we report the results
obtained by the end-to-end regression (Rours), as well as the
results obtained by using the resulting features for nearest
neighbor lookup (NNours).

D. Evaluation Metrics

To evaluate the performance of our method, we use the
angular error comparing the ground truth pose q and the
predicted one q̂ for a given test image xi:

θ(qi, q̂i) = 2 · arccos(|qi · q̂i|). (8)

The pose can either be obtained by nearest neighbor lookup
or directly estimated by the neural network. Furthermore,
we report the angular accuracy, where each test image is
considered a true positive if its angular error is below a
threshold t, where t ∈ [10, 20, 40] degrees.

Also, to evaluate the resulting feature descriptor we visu-
alize the features in a lower dimensional space using PCA
and t-SNE [1].

V. EVALUATION

In this section, we first give a detailed analysis of our
method compared to the baseline and discuss several aspects
of our method, starting with the influence of the network
architecture on the methods performance.

A. Comparison to baseline method

We first evaluated our method on models trained on a
different number of objects, for which the mean angular error
is reported in Table I. Note that for nearest neighbor pose
retrieval only the poses of correctly classified objects are
considered, while for regression the whole test set is used,
as in this case we do not directly infer the class.

Overall, we experienced a significant improvement in
performance for both regression as well as nearest neighbor
search accuracy by our proposed method. During training,

1https://www.tensorflow.org/

the usually more difficult regression task, seems to be op-
timized by additionally focusing on learning a meaningful
embedding, improving the mean angular error by 28.8%.
Since poses as well as objects are already well-distinguished
and the feature descriptors separated by the triplets and pair
loss functions, regression can more easily be learned.

As for the performance of nearest neighbor search we
found an improvement in robustness and accuracy of our
multi-task learning framework compared to the baseline. The
standard deviation as well as the mean angular error of our
model, NNours, decreases significantly, making the method
more robust. Here we can report a relative improvement of
30.0% for the mean angular error while training on the full
LineMOD dataset, meaning fifteen objects.

Both regression and nearest neighbor method benefit from
jointly learning robust features and poses. Which model to
choose now becomes a trade-off between time complexity
and accuracy, which we will address further in section V-D.

Next, to analyze our resulting feature descriptors, we
compare our method using nearest neighbor search, NNours
to the baseline method, for which we report the classification
and pose accuracy in Table II. Again, our experiment results
show that the feature descriptors provided by the model
trained on both tasks seem to be more differentiable as
well. As a result the nearest neighbor pose retrieval accuracy
improves even further. Additionally, we are able to improve
the classification accuracy compared to the state-of-the art
methods.

B. Influence of Network Architecture

Additionally, to explore the methods performance using
network architectures with varying depths, we run our model
using the network architecture described in [19]. This archi-
tecture is two layers deeper and removes max pooling layers
by including convolutional layers with stride two. Stated
by the authors of [4], a deeper network architecture did
not seem to improve the accuracy of the method further,
which we experienced in our test as well, however by
using our multi-task learning framework and testing on a
deeper network architecture we found that we can improve
the pose estimation accuracy even further. Here we were
able to achieve the results seen in Table II, abbreviated as
NNoursdeeper. We report a relative improvement of 7.2%
using nearest neighbor search and 9.0% in the mean angular
error of our regression results by using a deeper network
architecture, while training on the full LineMOD dataset.
We believe that by optimizing the network further, we can
achieve even better regression accuracy.

C. Feature Visualization

As we have shown in our experiments, apart from the
improvement in accuracy for pose regression, we experienced
an increase in the performance of nearest neighbor pose
retrieval as well. To analyze the resulting feature descriptors,
we visualize the descriptors in the lower dimensional 3D-
space using PCA and t-SNE.

15 Objects 10 Objects 5 Objects

Mean (Median) ± Std Classification Mean (Median) ± Std Classification Mean (Median) ± Std Classification

NN [13] 25.29◦ (11.76◦) ± 40.75◦ 92.46% 19.98◦ (10.58◦) ± 34.78◦ 92.56% 24.19◦ (10.72◦) ± 43.34◦ 99.31%
NNours 17.70◦ (11.59◦) ± 25.78◦ 97.07% 14.74◦ (11.53◦) ± 15.04◦ 97.50% 13.05◦ (10.29◦) ± 15.19◦ 99.90%

R 38.23◦ (26.16◦) ± 34.65◦ - 29.17◦ (20.69◦) ± 28.03◦ - 22.07◦ (15.56◦) ± 24.40◦ -
Rours 27.28◦ (19.25◦) ± 27.26◦ - 23.08◦ (17.56◦) ± 21.25◦ - 19.16◦ (13.80◦) ± 21.54◦ -

TABLE I: Angular error of the baseline method (NN), regression (R) and our approach (Rours, NNours).

Angular error Classification
10◦ 20◦ 40◦

NN [13] 35.98% 71.56% 82.72% 92.46%
NNours 37.89% 79.61% 92.27% 97.07%
NNoursdeeper 41.32% 82.52% 93.51% 97.26%

TABLE II: Comparison between the classification and angu-
lar accuracy of the baseline method, NN, and our results on
15 objects of the LineMod dataset.

We use TensorBoard2 to create the visualizations. For t-
SNE, we use a perplexity of 100, learning rate of 10 until
convergence. Using PCA, the variance including the best
three components resulted in 53.2%. The resulting clusters
for five objects can be seen in Fig. 1. We observe that in
both cases the object classes are nicely distinguished using
feature descriptors obtained by our proposed approach.

D. Scalability

In this section we analyze the time complexity and accu-
racy of our models at different number of objects. For nearest
neighbor search we use a standard OpenCV matcher. Fig. 4
shows the mean time of our models and the corresponding
angular error. The mean time for regression is calculated as
one forward pass of the neural network. For nearest neighbor
methods only the matching time is tracked. To obtain the
total time needed, the time of one forward pass should be
added to the shown results for matching. One can see nicely
that regression has a constant time, regardless of how many
objects are used, whereas for nearest neighbor searches the
time increases with additional objects. Depending on the
application, this and the drop in accuracy for additional
objects should be taken into account.

E. Sensitivity to regularization parameter λ

Since our loss function includes a regularization parameter
λ balancing the two components of regression and manifold
learning, we conducted experiments on the sensitivity of
this parameter using the full LineMOD dataset. By choosing
different values for λ and thus weighting either the Ld loss or
the pose loss Lpose more, we found that the results improve
for nearest neighbor pose retrieval, if the two terms are
equally weighted, and decreases when focusing more on the
regression loss. Regarding regression, we observed similar
results: improvement when additionally focusing on the Ld

loss, enhancing the feature representation and decrease, if

2https://www.tensorflow.org/get started/embedding viz

the model is only trained on regression. Nevertheless, it can
be seen that regression has a much stronger influence on the
nearest neighbor pose retrieval in terms of performance than
the other way around.

The results, depicted in Fig. 5, emphasize our assumption
that the two terms are beneficial to one another, i.e. both
features and pose regression are mutually optimized. Note
that we omit the regression result in case the model was only
trained on the feature representation. Since the regression
layer in this case should not be included in training and
might in this case lead to incomparable results.

VI. DISCUSSION

Using our proposed loss we were able to improve the
pose regressions performance and robustness in respect to
only using regression. However, the viewpoint descriptors
learned with this loss seem to be much more discrimina-
tive compared to those learned with the triplet loss alone.
Therefore, when we use them for the nearest neighbor search
we get the best performance. Pose regression seems to be
more difficult problem to solve alone, but when applied
on a manifold learned features, where discrete poses are
already well separated it becomes easier to perform pose
regression and achieve better performance than by simple
pose regression.

By including real data we were able to match synthetic
and real images onto the same domain. Still it might not
be possible to fully cover the pose space, which we found
to significantly impact the pose regressions performance as
some poses might not be mapped sufficiently. It is, however,

Fig. 4: Average time and median angular error of nearest
neighbor pose retrieval, regression and our approach.

Fig. 5: Sensitivity of λ in our loss function LMTL =
(1 − λ)Lpose + λLd. Depicted is the influence of different
weighting parameters on the mean angular error for regres-
sion as well as nearest neighbor pose retrieval.

still possible for the synthetic samples. In the ideal case,
only rendered samples should be used in the training set,
which would then also result in removing this limitation.
This is one topic, that should be further researched in future
work and which, we believe, can optimize our regression
approach beyond the performance of nearest neighbor pose
retrieval and create a generalized model, in turn optimizing
the method’s memory consumption and efficiency as well.

Furthermore, the difference between the regression ac-
curacy and the improved pose retrieval, based on nearest
neighbor search, might also be due to the non-constrained
space on which the poses are predicted. In our training set,
we constrain the poses as well as in-plane rotations to a
certain amount of degrees. However, while predicting the
pose, no such constraint is enforced by the neural network.
By constraining the network during training and enforcing
geometric bounds, we should be able to improve the pose
regression performance further.

VII. CONCLUSION

In this work, we have presented a multi-task learning
framework for object recognition and pose estimation, which
can be used for many applications, e.g. navigation in robotic
grasping. By introducing a novel loss function, combining
regression and manifold learning, we were able to improve
both direct pose regression as well as nearest neighbor
pose retrieval by a large margin, compared to the baseline
methods. Thus, we conducted a detailed analysis of feature
descriptor learning, regression and the effect that both tasks
have on each other in the context of object pose estimation.

Future work includes improving our methods generaliza-
tion capabilities by only using synthetic images for training,
and removing the need to rely on real data at all.

REFERENCES

[1] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(Nov):2579–2605,
2008.

[2] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer,
Gary Bradski, Kurt Konolige, and Nassir Navab. Model based training,
detection and pose estimation of texture-less 3d objects in heavily
cluttered scenes. In Asian conference on computer vision. Springer,
2012.

[3] Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, and
Nassir Navab. Deep learning of local rgb-d patches for 3d object
detection and 6d pose estimation. In European Conference on
Computer Vision, pages 205–220. Springer, 2016.

[4] Paul Wohlhart and Vincent Lepetit. Learning descriptors for object
recognition and 3d pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3109–
3118, 2015.

[5] Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and Tae-Kyun
Kim. Latent-class hough forests for 3d object detection and pose
estimation. In European Conference on Computer Vision, pages 462–
477. Springer, 2014.

[6] Max Schwarz, Hannes Schulz, and Sven Behnke. Rgb-d object
recognition and pose estimation based on pre-trained convolutional
neural network features. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 1329–1335. IEEE, 2015.

[7] Tomáš Hodaň, Xenophon Zabulis, Manolis Lourakis, Štěpán
Obdržálek, and Jiřı́ Matas. Detection and fine 3d pose estimation
of texture-less objects in rgb-d images. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pages
4421–4428. IEEE, 2015.

[8] Eric Brachmann, Frank Michel, Alexander Krull, Michael Ying Yang,
Stefan Gumhold, et al. Uncertainty-driven 6d pose estimation of
objects and scenes from a single rgb image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
3364–3372, 2016.

[9] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold,
Jamie Shotton, and Carsten Rother. Learning 6d object pose estimation
using 3d object coordinates. In ECCV (2), pages 536–551, 2014.

[10] Alexander Krull, Eric Brachmann, Frank Michel, Michael Ying Yang,
Stefan Gumhold, and Carsten Rother. Learning analysis-by-synthesis
for 6d pose estimation in rgb-d images. In Proceedings of the IEEE
International Conference on Computer Vision, pages 954–962, 2015.

[11] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic,
Kurt Konolige, Nassir Navab, and Vincent Lepetit. Multimodal
templates for real-time detection of texture-less objects in heavily
cluttered scenes. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 858–865. IEEE, 2011.

[12] Amir R Zamir, Tilman Wekel, Pulkit Agrawal, Colin Wei, Jitendra
Malik, and Silvio Savarese. Generic 3d representation via pose
estimation and matching. In European Conference on Computer
Vision, pages 535–553. Springer, 2016.

[13] Sergey Zakharov, Wadim Kehl, Benjamin Planche, Andreas Hutter,
and Slobodan Ilic. 3d object instance recognition and pose estimation
using triplet loss with dynamic margin. In Proceedings of the
International Conference on Intelligent Robots and Systems, 2017.

[14] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Anto-
nio Criminisi, and Andrew Fitzgibbon. Scene coordinate regression
forests for camera relocalization in rgb-d images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2930–2937, 2013.

[15] Abner Guzman-Rivera, Pushmeet Kohli, Ben Glocker, Jamie Shotton,
Toby Sharp, Andrew Fitzgibbon, and Shahram Izadi. Multi-output
learning for camera relocalization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1114–
1121, 2014.

[16] Julien Valentin, Matthias Nießner, Jamie Shotton, Andrew Fitzgibbon,
Shahram Izadi, and Philip HS Torr. Exploiting uncertainty in regres-
sion forests for accurate camera relocalization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
4400–4408, 2015.

[17] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A
convolutional network for real-time 6-dof camera relocalization. In
Proceedings of the IEEE international conference on computer vision,
pages 2938–2946, 2015.

[18] Ken Perlin. Noise hardware. Real-Time Shading SIGGRAPH Course
Notes, 2001.

[19] Mai Bui, Shadi Albarqouni, Michael Schrapp, Nassir Navab, and
Slobodan Ilic. X-ray posenet: 6 dof pose estimation for mobile x-
ray devices. In Applications of Computer Vision (WACV), 2017 IEEE
Winter Conference on, pages 1036–1044. IEEE, 2017.

	I Introduction
	II Related Work
	III Methodology
	III-A Regression
	III-B Descriptor Learning

	IV Experimental Setup
	IV-A Dataset Generation
	IV-A.1 Treating Rotation-invariant Objects
	IV-A.2 Data Augmentation

	IV-B Implementation Details
	IV-C Baseline Models
	IV-D Evaluation Metrics

	V Evaluation
	V-A Comparison to baseline method
	V-B Influence of Network Architecture
	V-C Feature Visualization
	V-D Scalability
	V-E Sensitivity to regularization parameter

	VI Discussion
	VII Conclusion
	References

