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Abstract—We present a novel method for joint reconstruction
of both image and motion in positron-emission-tomography
(PET). Most other methods separate image from motion es-
timation: They use deformable image registration/optical flow
techniques in order to estimate the motion from individually
reconstructed gates. Then, the image is estimated based on this
motion information. With these methods, a main problem lies
in the motion estimation step, which is based on the noisy gated
frames. The more noise is present, the more inaccurate the image
registration becomes.

As we show in a simulation study, our joint reconstruction
approach overcomes these drawbacks and results in both visually
and quantitatively better image quality. We attribute these results
to the fact that for motion estimation always the currently best
available image estimate is used and vice versa. Additionally,
results for real dual respiratory and cardiac gated patient data
are presented.

Index Terms—PET, reconstruction, motion compensation, gat-
ing.

I. INTRODUCTION

With increasing physical resolution of nowadays positron-
emission-tomography (PET) scanners, even small patient mo-
tion can significantly reduce the image quality and thus lead
to false diagnosis. The goal of motion compensation methods
in PET is to reconstruct the image as if no motion had taken
place.

Most of current motion compensation methods consist of
two steps: (i) motion estimation and (ii) image estimation.

A popular way to estimate respiratory and/or cardiac mo-
tion is to (a) divide the measured data into different gates
according to the cardiac/respiratory cycle, (b) reconstruct each
gate by a state-of-the-art PET reconstruction method (such as
maximum-likelihood expectation-maximization, ML-EM, [1])
and (c) register each frame to a reference frame. For gated
PET, this has been done with affine motion models [2], non-
rigid b-spline models [3] and optical flow [4]–[7].

In the second step, the image is estimated based on the
available knowledge about motion. A very common approach
is to deform reconstructed gates to the reference frame and
then combine them (usually by taking the sum of these
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(a) Reconstruction of one gate with ML-EM

(b) Reconstruction of the same gate with our proposed joint recon-
struction method

Fig. 1: Transverse, coronal and sagittal views of a human’s
heart for a real 10 minutes 18FDG PET scan.

deformed frames) [4]–[7]. More sophisticated methods use an
adapted ML-EM algorithm which is able to deal with arbitrary
non-rigid motion [3], [8], [9].

A major drawback of these methods lies in the motion
estimation step. On the one hand, one wants to have as many
gates as possible in order to accurately measure the motion.
On the other hand, using more gates implies less photon counts
in each gate and thus leads to noisier reconstructed images on
which the motion estimation is based. So, with an increasing
number of gates, the motion estimation step becomes more
and more likely to be of low accuracy or even fail completely.

Beyond the described methods which separate motion esti-
mation from image estimation, another (much smaller) class
of algorithms that jointly estimates image and motion has
emerged. It can be broadly sub-classified into two categories:
those that use a different image estimate for each frame [10]–
[12], and those that use a common image estimate for all
frames [13].

In this work, we present a novel method for joint estimation
of image and motion. We use a common image estimate and -
in contrast to [13] - a deformable motion model. Our method
uses all available counts and thus leads to reconstructions
which are much less noisy (see Figure 1b). It is possible to
visualize the motion instances for every gate.



II. MATERIALS AND METHODS

A. Joint Reconstruction

In the following, we describe a mathematical model for
gated image acquisition in PET. Based on this model we
develop a cost functional for reconstruction which depends
on both image and motion and is subject to minimization.

1) Model: It is well known that, ideally, the relationship
between an image f : R3 7→ R and measurement data ĝ :
N 7→ R in PET can be modeled as ĝ(a) =

∫
H(a,x)f(x)dx.

H : N × R3 7→ R is the system model which contains
the probability that the two annihilation photons emitted at
position x will be measured in line-of-response (LOR) a.

We extend this model to

∑
t

ĝ(a, t) =
1
T

∑
t

∫
H(a,x)f(ϕ(x, t)) dx (1)

in the case of subject motion. Here, T is the number of gates
and ϕ(x, t) : R3 × N 7→ R3 represents the deformation field
of image f at gate t with respect to an arbitrary reference gate
tref (this implies ϕ(x, tref) = x).

2) Cost Functional: Our preliminary goal is to build a cost
functional D(f,ϕ) in such manner that a tuple of image f?

and ϕ? for which D(f?,ϕ?) is minimal fits to the above model
as well as possible. Then, we introduce a regularization term in
order to encourage physically meaningful deformation fields.

a) Dissimilarity Term: It is well known that the number
of counts g(a, t) that is measured for an LOR a is distributed
by a Poisson random variable:

P (g(a, t)|f,ϕ) = e−ĝ(a,t) · ĝ(a, t)
g(a,t)

g(a, t)!
, (2)

where ĝ(a, t) = 1
T

∫
H(a,x)f(ϕ(x, t)) dx is the estimated

measurement vector given an image f and transformation ϕ.
The likelihood function for all measured events of a gate t

is

L(f,ϕ|g(a, t)) =
∏
a

P (g(a, t)|f,ϕ) . (3)

We seek to find a pair of image f and motion ϕ that max-
imizes the likelihood function for all gates. This is equivalent
to minimizing the negative log-likelihood function

log(−L(f,ϕ)) = (4)∑
t

∑
a

ĝ(a, t)− g(a, t) log (ĝ(a, t)) + log(g(a, t)!) .

Here,
∑

t

∑
a log(g(a, t)!) can be omitted since it does not

affect the minimum. So, finally we arrive at

D(f,ϕ) =
∑

t

∑
a

ĝ(a, t)− g(a, t) log (ĝ(a, t)) (5)

which is subject to minimization.

b) Regularization: In order to prohibit extreme deforma-
tions we use homogeneous diffusion regularization, which is
well known in the image registration community:

S(ϕ) =
∑

t

3∑
i=1

∫
‖∇xϕi(x, t)‖2 dx (6)

We initially also employed smoothing in the time domain,
however, no differences in the reconstruction could be noted.

Finally, the complete cost functional we seek to minimize
is

J (f,ϕ) = D(f,ϕ) + α S(ϕ) . (7)

The regularization parameter α defines the smoothness of our
sought deformation. It has to be carefully adjusted to the
specific case. If it is too high the resulting ϕ will represent no
visible deformation and thus the resulting image f will still
suffer from motion blur. Is it too low, J will be over-fitted
and an unrealistic pair of image and motion results. Section
III contains more information on the right choice of α.

B. Registration and Fusion of Reconstructed Frames (RFRF)

We choose the RFRF approach for comparison since it is a
common motion compensation method in cardiac PET. It can
be separated in the motion estimation and the image estimation
step.

Motion estimation: we register each of the already recon-
structed gates to a reference gate (in this case the first gate).
Registration is done by an optimization approach where we
seek to optimize the following cost functional:

R(ϕRFRF) =
∑

t

∫
(ft(x)− f0(ϕRFRF(x, t)))2 dx + α S(ϕRFRF) .

(8)

ft is pre-reconstructed t-th gate. ϕRFRF is the sought time-
dependant transformation field that transforms f0 to the re-
spective gate. S is the homogeneous diffusion regularization
term from equation (6). Note that for the first gate we get the
identity transformation: ϕRFRF(x, 0) = x.

The image estimation is a summation of the transformed
gates: fRFRF(x) =

∑
t ft(ϕ−1

RFRF(x, t)).

C. Data

We test our algorithm for both simulated and real data.
1) Simulation: We generate 32 frames using the XCAT

phantom [14]. One complete respiratory cycle of a length of
five seconds is simulated, without any cardiac motion. The
extent of diaphragm motion is set to two centimeters. These
32 frames are then redistributed to eight gates. In doing so
we make sure that motion is simulated also within a gate. For
each gate, a volume of 50 × 50 × 50 voxels containing the
heart is cropped.

The expected number of counts for each LOR is calcu-
lated by projecting each gate to measurement space. The
measurements are finally generated from the expected number



of counts by a Poisson random generator. This way we take
into account the acquisition time and activity. Ten levels of
statistical noise, representing very long to extremely short
acquisition times, were simulated.

Since we want to focus on image degradations induced
by motion, we did not make use of external simulation
packages which would include effects like scattering, random
coincidences etc. We simulate a Siemens Biograph Sensation
16 PET/CT scanner and use Scheins’s algorithm to generate
the system matrix [15].

2) Real Data: The patient data was taken from a previ-
ously accomplished cardiac examination which measured the
myocardial metabolism in order to assess tissue viability. It
was acquired with a Siemens Biograph Sensation 16 PET/CT
scanner. The injected dose of 18F-FDG was roughly 400 MBq.
The patient had to rest for 60 minutes before data acquisition
started. Both the respiratory and the ECG signal were recorded
and later used in order to divide the data into eight respiratory
gates by omitting the systolic phase and combining all diastolic
phases into one (since the diastolic phase is the longest cardiac
phase with minimal motion).

As for the simulation, we also use Scheins’s algorithm for
calculating the system matrix. Due to memory and computa-
tional complexity we have to use an adaptive voxel grid: within
a predefined region-of-interest (ROI) the grid is constant and
fine (0.4 × 0.4 × 0.4 mm3) and outside the ROI it gets
exponentially coarser.

D. Data Analysis

For the simulated data, we compare our joint reconstruction
approach (JR) to an ML-EM reconstruction (30 iterations) for
motion-contaminated data (MC), an ML-EM reconstruction
(30 iterations) for the first gate (FG), the RFRF approach (as
described in section II-B) and an ML-EM reconstruction (30
iterations) for motion-free data (MF).

As reference frame for all comparisons we choose the first
gate. In case of our joint reconstruction approach, we map the
resulting image f to the first gate by applying the reconstructed
deformation ϕ: f(ϕ(x, t)).

As a quantitative measure for evaluation we use the correla-
tion coefficient CC(x,y) = xTy

‖x‖‖y‖ between the reconstructed
image of the respective reconstruction approach (represented
by a vector x) and the original image (represented by a vector
y). Both x and y are shifted such that their mean value is
zero.

In addition, we provide selected resulting images for visual
inspection. For real data, no quantitative analysis is possible
and one has to rely on visual inspection.

III. RESULTS AND DISCUSSION

A. Simulation

Table I summarizes the results for different noise levels. Fig-
ure 2 shows visually selected transverse, coronal and sagittal
slices for three levels of noise. The level of noise is indicated
by the number of annihilation events - the less events, the
higher the level of noise.

Counts MC FG RFRF JR MF
9.00e+07 0.93 0.98 0.97 0.99 0.99
4.50e+07 0.93 0.97 0.97 0.98 0.99
2.25e+07 0.93 0.95 0.96 0.98 0.99
1.13e+07 0.92 0.91 0.94 0.98 0.98
5.60e+06 0.91 0.85 0.89 0.97 0.97
2.80e+06 0.88 0.74 0.77 0.96 0.95
1.40e+06 0.84 0.62 0.61 0.93 0.91
7.00e+05 0.76 0.48 0.46 0.87 0.85
3.50e+05 0.65 0.36 0.33 0.78 0.74

TABLE I: Simulation: quantitative evaluation for different
reconstruction scenarios. We calculate the correlation coeffi-
cient of the respective reconstruction method and the original
image. We compare an ML-EM reconstruction of the motion-
contaminated data (MC), an ML-EM reconstruction of just
the first gate (FG), the registration and fusion of reconstructed
frames (RFRF) as described in the methods section, our joint
reconstruction (JR) and an ML-EM reconstruction of motion-
free data (MF).

JR performs better than MC, FR and RFRF in all cases.
Especially for moderate and high noise levels the difference
is striking.

Comparing JR to MF, it is surprising that JR has an even
higher correlation coefficient for high noise levels. Consulting
Figure 2c reveals that this observation may be attributed to
the fact that the joint reconstruction is less noisy than the
reconstruction for motion-free data.

Interestingly, RFRF works better than MC only for low
and moderate noise levels. Our explanation is two-fold: firstly,
image registration in the RFRF approach becomes more and
more inaccurate with increasing noise. Secondly, fusion by
summation in image space is a permitable approximation only
for low-noise scenarios.

B. Real Data

Figure 3 compares our JR approach (fourth column) to MC,
FG and RFRF. It clearly shows the better defined myocardial
walls, indicating the potential to achieve a notable reduction
of the motion induced blur.

IV. CONCLUSION

We present a novel motion compensation algorithm for
gated positron-emission-tomography. Our method jointly re-
constructs both image and motion. We compare our method
to a registration-and-fusion-of-reconstructed-frames approach
which is a typical ambassador of methods that separate
image from motion estimation. In a simulation study, both
quantitative and visual comparison clearly proof the superior
reconstruction quality of our method for all simulated noise
conditions, particularly in high noise scenarios. The paper
concludes with results for real dual respiratory and cardiac
gated patient data which further underline its potential in
reducing motion blur.
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