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Abstract. We present a new method for blind deconvolution of multiple noisy
images blurred by a shift-variant point-spread-function (PSF). We focus on a set-
ting in which several images of the same object are available, and a transforma-
tion between these images is known. This setting occurs frequently in biomedical
imaging, for example in microscopy or in medical ultrasound imaging. By using
the information from multiple observations, we are able to improve the quality
of images blurred by a shift-variant filter, without prior knowledge of this filter.
Also, in contrast to other work on blind and shift-variant deconvolution, in our
approach no parametrization of the PSF is required. We evaluate the proposed
method quantitatively on synthetically degraded data as well as qualitatively on
3D ultrasound images of liver. The algorithm yields good restoration results and
proves to be robust even in presence of high noise levels in the images.

1 Introduction

Biomedical imaging techniques suffer - like all measurements - from errors introduced
in the acquisition process. Techniques which are able to remove these errors can im-
prove the quality of the images and thus enhance their diagnostic value. Since blur is
one of the most common image degradations, deconvolution methods which undo the
effects of blurring and thus reveal structures not visible in the uncorrected images are
extremely important in biomedical imaging. For medical imaging devices such as ultra-
sound or microscopy, especially the case in which the blur is not constant in the image -
the so-called shift-variant blur - is important. The case of constant (shift-invariant) blur
hardly occurs in biomedical applications.

The problem of deconvolution of shift-variantly blurred images is an extremely chal-
lenging task. One part of the difficulty is to determine the point-spread-function (PSF),
that is, the function characterizing the blur. Up to now, this is achieved by either theoret-
ical predictions (see e. g. [1] for medical ultrasound) or measurements. Both have to be
performed for every single device and are time-consuming, complicated, error-prone,
and in some cases even not feasible. Deconvolution methods that build on this previous
step can not be considered as general.

As a remedy, most of the existing work assumes a simplified model, the shift-invariant
one. This is tempting since it allows for the very attractive option of restoring both the
image and the PSF within one method, without the need of measuring or theoretically
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predicting the PSF. This class of methods is denoted as blind deconvolution methods.
Unfortunately, assuming a shift-invariant model very often comes at the price of not
adecuately describing biomedical reality. Therefore, in many cases such methods do
not yield optimal restorations. It would be very attractive to have both: the shift-variant
model and a blind restoration method able to deal with this model.

In this paper, we present such a blind and shift-variant method. Our method uses
multiple images of the same object together with the information about the transfor-
mation between the images. This is a setting readily available in many medical and
microscopic applications, and, thanks to advancing image registration techniques (es-
pecially deformable registration), will be more and more widespread in the future. Since
in this setting the observations are blurred by the same PSF, each additional observation
provides information about the present degradation. Our method takes this information
into account for the restoration of both the image and the PSF.

To the best of our knowledge, this is the first method capable of performing an unpa-
rameterized, blind, and shift-variant deconvolution. These properties make our method
extremely general and widely and easily applicable to many applications in the biomed-
ical imaging field.

1.1 Related Work

Single-view deconvolution is a standard post-processing procedure in biomedical ap-
plications such as ultrasound [2] or microscopy [3]. Unfortunately, restoration from a
single-view is a dramatically ill-posed problem, and in the best case allows for blind
shift-invariant deconvolution in a low noise scenario. In photography, several semi-blind
shift-variant methods have been proposed [4,5,6,7,8]. However, these methods rely on
a priori information about the blur, e. g. that the PSF is an instance of motion blur or out-
of-focus blur, and thus can not be considered as general. For microscopy, some dedicated
methods are known: in [9], the volume subject to restoration is reconstructed block-wise,
and shift-invariance is assumed for each block. Preza and Conchello [10] assume to know
the PSF at several points in space and restrict shift-variance to the depth direction.

Already in the 1970’s researchers found that the multi-view scenario has advantages
over single-view restoration, since each additional observation adds information that
can be taken into account for the restoration process [11]. Since then, especially dedi-
cated devices for this multi-view setting have been developed for both microscopy and
ultrasound [12,13,14,15,16]. Existing restoration methods from the single-view setting
have been adapted and new methods especially dedicated to the multi-view setting have
been invented. Shaw et al. [17] combine several blurred observations by taking the max-
imum in Fourier space. Their restoration is fast and simple to implement. However it is
not optimal, even for synthetic images, and also dramatically amplifies noise. Kikuchi
et al. calculate synthetic projections from two blurred observations and then use those
projections that are less affected by blur for a standard computed tomography recon-
struction algorithm [18]. Though being well suited for their specific scenario, this is
not quite general since it only works for the shift-invariant case and the direction of
the blur has to be known in advance. Often, very simple restoration techniques like lin-
ear combination are applied and are reported to lead to a significant improvement of the
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resolution [14,15]. Soler et al. propose a non-blind shift-invariant deconvolution method
for ultrasound that relies on a measured PSF [16].

2 Method

2.1 Model

In contrast to other multi-view techniques, we use the shift-variant image formation
model

zi = (u ◦ ϕi)� h + η , (1)

where zi ∈ F is the actual measurement (F denotes the functional space of all images
Ω → R where Ω is a bounded domain Ω = [0,1]2 ⊂ R

2), u ∈ F is the original image,
ϕi : Ω → Ω is the spatial transformation between measurement and original image,
h : (Ω × Ω) → R is the shift-variant PSF, ”‘�”’ is the shift-variant convolution operator
and η ∈ F represents arbitrary noise. Using this model, we assume that the PSF is equal
for each observation, that is, not changing over time. This is a valid assumption for most
biomedical applications. Please note that we do not restrict the transformation ϕ to rigid
transformations which implies that also deformations are within our model.

In presence of noise, we can not assume that zi = u(ϕi)� h holds exactly, so we for-
mulate the cost function which is subject to minimization as

D[u,h] =
1
2

P

∑
i=1

�
Ωi

ei(x)2 dx , (2)

where we suppose to dispose of P measurements. ei(x) is an error term that measures
the difference of the convolved real image to the measurements at position x by

ei(x) = ((u ◦ ϕi)� h − zi) (x) =
�

Ω
u(ϕi(ξ))h(x,ξ−x)dξ− zi(x) . (3)

The set Ωi denotes the overlapping domain of the original image u and the image trans-
formed by ϕi.

The problem of minimizing the functional from Equation (2) is ill-posed. In order
to render the problem well-posed we introduce regularizing terms U and H . While U
operates on the image u, the term H imposes restrictions on the point-spread-functionh.

So we define the regularized functional J : F ×F → R to be minimized which models
the problem as

J [u,h] = D[u,h]+ αU[u]+ βH [h] . (4)

Here, the positive real coefficients α and β determine the influence of the respective
regularization term.

Additionally, since we assume to deal with an intensity PSF, we restrict h to zero
and positive values, that is, h(x,s) ≥ 0. We also assume that the imaging system neither
emits nor absorbs energy and so the PSF has to be normed to one at every spatial
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Fig. 1. The percentage mean squared error (PMSE, left plot) and the cost functional from equation
(4) (right plot) are plotted over the iterations for the hippocampal rat neurons example - compare
Figure (2). For low noise levels, the PMSE is reduced to approximately half of its initial value.
Even for extremely noisy images our method provides a significant reduction of the PMSE. The
cost function is reduced for each iteration and the algorithm terminates when its reduction is
stagnating.

position x in the image , that is
�

Ω h(x,s)ds = 1. The final goal then is to find functions
u and h that minimize J subject to constraints, that is, compute

argmin
u,h

J[u,h] subject to h(x,s) ≥ 0 and
�

Ω
h(x,s)ds = 1 ∀x,s ∈ Ω . (5)

Regularization Term U. Total variation [19] has proven to be a very successful method
for image regularization since it discourages noise while edges are preserved

U[u] =
�

Ω
|∇xu(x)| dx . (6)

This regularization term penalizes too large gradients in the image to be reconstructed.

Regularization Term H . As mentioned, the lack of information due to the shift-variant
PSF is tremendous. In order to account for this lack of information and the resulting
ill-posedness of the problem, we introduce a regularization term H which operates on
the PSF:

H [h] =
��

Ω
|∇xh(x,s)|2 ds dx . (7)

A shift-variant PSF can be considered as a set of shift-invariant PSFs for each pixel
x. The regularization term H penalizes the difference between the shift-invariant PSFs
at neighboring pixels. It is important to note that this regularization will not impose
smoothness on the PSF itself but only on their transitions.

2.2 Algorithm

The main difficulty of blind deconvolution in general is that we neither have u nor h.
For this type of problem, You and Kaveh identify a scale problem [20] and so justify
an algorithmic scheme that is alternating between the calculation of h and u. For the
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Fig. 2. The original image of hippocampal rat neurons (left) is blurred by a shift-variant PSF
(fourth from left) and noise of different strength is added (second and third). Only the first of four
observations for each noise case is shown. The restored images and the restored PSF for the 50
dB noise case are shown aside. For 2D images, a shift-variant PSF can be considered as a 2D
grid of shift-invariant PSFs for each pixel. For the sake of a clear visualization, the PSF is only
imaged for a region of interest of 10×10 image pixels.

calculation of h we assume that u is given, and for the calculation of u we assume h to
be given. These two steps are executed alternately until convergence

First step: h ← argmin
h

J [u,h] subject to constraints on h (8)

Second step: u ← argmin
u

J [u,h] . (9)

These two optimization problems are treated completely independently. In first step,
we assume that u is perfectly known and on this base h is sought. As an initial guess
for u we take the first observation z1. After discretization, any constrained least-squares
optimizer can be used. In the second optimization problem we assume that h is perfectly
known and on this base u is sought. We derive the Euler-Lagrange first order optimality
equation corresponding to this optimization problem by extending the derivation of [8]
to the multi-view scenario:

∑
i

�
Ωi

ei(ξ+ ϕ−1
i (x))h(ξ+ ϕ−1

i (x),ξ)dξ = −α∇	
x

1√
u2

x1
+ u2

x2
+ ε2

∇xu. (10)

The image which is subject to reconstruction is found by solving this PDE.
We discretize equation (10) with implicit finite-differences. This leads to a nonlinear

system of equations. The nonlinearity can be faced by rearranging it as a fixed-point
equation which leads to an iterative solution scheme. Each iteration then involves the
solution of a very large linear system of equations that can be solved by any standard
method. We use the method of conjugate gradients.

3 Results

3.1 Quantitative Evaluation

We use a simulation of the degradation process with known ground truth. We evaluate
our method for several test cases with different noise levels. In each case, four observa-
tions are synthetically generated by transforming and degrading an original image. We
simulate the image acquisition process by a device suffering from shift-variant blurring
and noise. For the simulation, we perform the following steps for each observation:
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Fig. 3. Comparison of our blind shift-variant method to Soler’s non-blind shift-invariant method:
Soler et al. simulate a multi-view setting by degrading a synthetic image of the kidney with shift-
invariant Gaussian blur and noise. Only the first of two generated observations is shown (left).
For their restoration in (second from left), they use the known PSF. Our method restores both the
image and the PSF (third and fourth from left), without any a priori knowledge about the PSF.
Even so, our results are comparable.

(i) rotation and translation, (ii) blurring (simulated by shift-variant filtering) and finally
(iii) addition of white Gaussian noise. The test cases differ in the amount of added
noise. We measure the noise level by the signal to noise ratio SNR = Pzi/PNoise, where
the signal power Pzi is the power of the observations zi and PNoise is the noise power.
The quality of reconstruction for the image is measured by the percentage mean squared
error PMSEu = |u− uorig|2/(|Ω||uorig|2).

For low noise levels, Figure 2 shows clearly that the obtained restoration of both the
image and the PSF comes close to their respective originals. Our restoration leads to
better defined structures even for very high noise levels. The reduction of the PMSE as
well as the evaluation of the cost functional of equation (4) is presented in Figure 1. We
observe fast and robust convergence of the algorithm for all test cases.

3.2 3D Ultrasound Restoration of a Volunteer’s Liver

We apply our algorithm to a 3D ultrasound acquisition of a volunteer’s liver acquired
with the Siemens SONOLINE Antares c©. We acquire two volumes of size of 1003 vox-
els each, and the second volume is rotated by an angle of approximately 90◦ about the
axial direction. Figure 4 shows selected slices of different orientations of the first obser-
vation. The corresponding restoration disposes of better defined structures and reveals
some details not quite visible in the observation. Note that the blur extension of the
restored PSF varies spatially. Our algorithm performs five iterations until convergence
and in our current C++ implementation this takes about six hours.

3.3 Comparison to a Non-blind Shift-Invariant Method

Comparison of our method to other deconvolution methods is a delicate matter, since - to
the best of our knowledge - there is no method that performs blind shift-variant deconvo-
lution without assuming an a priori blur model. However, we compare our method to the
recently proposed non-blind shift-invariant method of Soler et al. [16]. There, synthetic
images of a kidney are blurred by shift-invariant Gaussian blur and noise is added and
the known PSF is used for restoration. Figure 3 shows that though our method does not
use the PSF and assumes a shift-variant blur, it produces competitive results. It restores
both the image and the PSF. The restored PSF fits to the specifications made in [16].
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Fig. 4. Multi-view unparameterized blind shift-variant deconvolution of 3D ultrasound acquisi-
tions of a volunteer’s liver: two 3D spatially transformed observations are used for restoration.
The transformation between the two observations is obtained by deformable registration as de-
scribed in [21]. The first row shows selected slices of the first observation. The corresponding
restored slices are shown in the second row. Last row: restored PSF. For 3D images, a shift-
variant PSF can be considered as a 3D grid of shift-invariant PSFs for each voxel (for the sake
of a clear visualization we use a coarser grid). It can be clearly seen that the PSF is changing its
shape from the lower layers to the upper layers.

4 Conclusion

We present a new method for multi-view blind deconvolution. Existing blind methods
assume a stationary blur that is not changing over the image. In contrast, we use a shift-
variant blur model that allows the blur to vary with the spatial position in the image.
This makes our method better suited for biomedical applications than shift-invariant
methods. Due to its blind character, there is no need for previous measurements or
theoretical predictions of the PSF. We show experimentally that our method is even
competitive to non-blind shift-invariant methods. Our experiments prove robustness,
also for extremely high noise levels.
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