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Abstract

The automated annotation of bones that are visible in CT images of the skeleton is
a challenging task which has, so far, been approached for only certain subregions of the
skeleton, such as the spine or hip. In this paper, we propose a novel annotation algorithm
for automatically identifying structures and substructures in the whole skeleton.

Our annotation algorithm makes use of recent advances in anatomical landmarks de-
tection and is capable of generalising local information about landmarks to a dense label
map of the full skeleton by anatomical triangulation. We follow a recognition approach
that combines the use of distance-based features for measuring Euclidean and geodesic
distances to a few given landmark locations, a parts-based model that is disambiguat-
ing anatomical substructures, and an iterative scheme for considering distances to the
previously detected structures and, hence, to a dense set of anatomical reference points.

We propose an annotation protocol for 136 substructures of the skeleton and test our
annotation algorithm on 18 CT images. On average, we obtain a Dice score of 90.54.

1 Introduction
Dense skeleton annotation is necessary for a variety of clinical and research applications,
in particular in orthopaedics or oncology. In patients with primary or secondary tumours
in the bones, for example, numerous lesions have to be mapped and analysed, and also to
be reidentified and compared in case several scans are acquired while monitoring treatment.
Evaluating those lesions and staging the patient is a very time-consuming task to perform
manually, in particular in the context of clinical application, where dozens to hundreds of
lesions have to be localised and evaluated repeatedly for each individual patients.
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Different semi-automatic and automatic methods exist that perform skeleton annotation
for the orthopaedic domain in MR or CT images. For example, in [9] a parts-based model
is used and in [6] an improved Adaboost is used to annotate the spine. In [8], a specific
shape model is matched to each vertebra. In [11], a pose shape estimation followed by a
multi-pass Random Forest and a graph cut regularisation are used to segment cartilage in the
knee. In [5], during the training, manual centroids of the vertebrae are converted to rough
dense labels which are then used to train a Random Forest classifier for centroid localisation
of the vertebrae. In [12], deformable template matching is used to annotate the ribs. Finally,
in [4], an atlas is used to annotate the hip region. However, these methods are specific to a
particular region of the skeleton and generalising them to the whole skeleton, with a much
larger field of view, a higher variability of the anatomy, but also variations in the positioning
of the patient remains an open task. It has – very much to our own surprise and in spite
of the high demand for such approaches in the staging of bone tumour patients – not been
sufficiently addressed yet.

In this article, we propose an approach for fully automatic dense annotation of substruc-
tures of the whole skeleton in CT images for staging bone tumour patients, where we want
to localise anatomical substructures in order to estimate the local tumour load as visible
from PET/CT images. Our approach builds upon the sparse annotation method in [3] and
also shares some conceptual similarities with the approach of [5], but uses distance and not
appearance-based features. Different from [5], it provides a dense labelling of the skeleton
and not only the centroids of the structures and is not limited to the spine. As our approach
builds solely on distance-based features that are measuring, for each pixel, the proximity to
multiple anatomical landmarks in order to infer the relative positioning with respect to this
landmark and, hence, the correct anatomical label, we refer to our approach as anatomical
triangulation. Features that are measuring Euclidean and geodesic distances to a few auto-
matically localised landmarks are used in a Random Forest that provides a first anatomical
classification. A parts-based model then disambiguates the position of the centroid of each
anatomical substructure. These centroids are then used by a second Random Forest classifier
to provide a final labelling. The final set of dense labels is obtained by iterated anatomical
triangulation.

Our approach is tailored to the needs of PET/CT data analysis in oncological staging. At
present, because of the time required for manual annotation of PET/CT data, clinicians only
use the two or three biggest metastasis to evaluate the evolution of the cancer or the response
to a therapy, ignoring both smaller metastasis and information about the global distribution of
lesions. Our method will, firstly, allow to process the PET/CT scan in a fully automatic fash-
ion, extracting their location and different values of interest and following them over time.
Secondly, it will also provide new means for disambiguating the correspondence problem
over different scans that can arise from inexact registration or tumours merging or splitting,
as mapping anatomical substructures of the skeleton allows us to calculate the average lo-
cal tumour load. As both tasks require a sufficient high granularity of the anatomical atlas,
we also propose a new annotation scheme that not only segments individual bones, but also
substructures at a scale relevant for oncological staging throughout the skeleton: for exam-
ple, each rib is divided into three substructures and each of the femurs and humerus in five
substructures, while each foot is considered a single structure. This is a total of 136 regions.

In the following section, we detail our method for automatically annotating the skeleton.
We then evaluate it in Section 3. We end with a conclusion in Section 4.
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Figure 1: Description of the workflow. On the left, landmarks generated by Hough regression
forest [3] are shown as part of the preprocessing. A first labelling (middle) is obtained using
a Random Forest classifier (segments are assigned random colors for better visualisation).
Centroids of each segment (right) are assigned anatomical labels by the parts-based model
resolving ambiguous assignments. Centroids serve as new and evenly distributed landmarks
for calculating distance features that serve as input to a another Random Forest classifier.
The last two steps can be iterated.

2 Methods

Localising multiple anatomical regions and subregions of the skeleton is a multi-class prob-
lem, where each class corresponds to a bone or a segment of bone. In this section, we detail
the four main steps of our method. The workflow is summarised in Figure 1. In a first step,
we segment bones from the background and compute anatomical landmarks (Sec. 2.1). We
then follow a recognition approach: a Random Forest classifier that uses distances to a few
anatomical landmarks as input predicts a probabilistic label for each voxel (Sec. 2.2). A
parts-based model is then used to disambiguate the position of the centroids of each bone
subregion, resolving in particular an incorrect numbering of the ribs. As the newly identified
substructures provide a much denser set of anatomical references than the initial landmarks,
we now use the distances to the centroid of newly identified regions as input to another Ran-
dom Forest classifier, predicting the final label (Sec. 2.3). We finally iterate local prediction
and global correction using the parts-based model.
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2.1 Preprocessing: bone segmentation and landmarks localisation

In a preprocessing step, the bones are segmented from the background in the CT image, and
anatomical landmarks are computed.

2.1.1 Bone segmentation

We define bone segmentation as a two class-labelling problem: 0 denotes the background
class, and 1 the bone class. To this end, we have adapted the method described in [7],
modelling the intensities in the image as a mixture of two Gaussians. We then apply a
conservative threshold to define a first segmentation of bones. As a second step, where
morphological operations are used in [7], we choose to minimise the following energy on
the grid-structured graph of the image:

E = ∑
x

U(x, l(x))+ ∑
x∼y

B(x,y) (1)

where l ∈ [|0,1|] is the label,∼ denotes the neighbouring relation, δ is the indicator function,
µ and σ are the mean and the standard deviation of the intensity distribution of bones defined
by the thresholding, Ix is the intensity of the image at voxel x, λ1 and λ2 are parameters,
d(x,y) is the Euclidean distance between the voxels x and y and

• U(x, l) =
{

e−(Ix−µ)/σ2 ×δIx<T +δT<Ix<λ1T +λ2×δIx>λ1T if l = 0
1−U(x,0) else

,

• B(x,y) = e−(Ix−Iy)2/σ2
e−d(x,y)2

.

The unary potential term treats voxels differently according to their intensity: if the intensity
is much higher than the threshold T (much being defined by the parameter λ1), the cost of
classifying them as background is high (defined by λ2); if the intensity is slightly higher than
T , the cost of classifying the voxel as background is unitary because the confidence that it
belongs to bone is smaller; if the intensity is lower than T the cost of classifying the voxel
as background decreases in a Gaussian fashion with its intensity. The binary potential term
is similar to a bilateral filter and enforces spatial consistency for neighbours with similar
intensities.

This is a binary min-cut problem and we solve it using the implementation of α-expansion
provided in [2].

2.1.2 Anatomical landmarks

Landmarks are obtained in a preprocessing step by the method of Donner et al. [3]. It
consists of a classifier for pre-filtering landmarks positions that are then refined through
a Hough regression model and a parts-based model of the global landmark topology. Nl
landmarks are spread over the whole body at meaningful places (at joints or tips of bones)
that can be localised with high accuracy (a few millimetres) even in an automated fashion
and each landmark is present in all the datasets (Figure 1: left).
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2.2 Anatomical triangulation: dense probabilistic labelling using
distance features

In the second step, we compute a probabilistic labelling of the L structures and substructures
of the skeleton. This is an L-classes segmentation problem. We calculate the following
features that include both local and long-range contextual information and are used as input
to a Random Forest classifier:

1. the triangulation features: signed distance to each landmark in each of the three direc-
tions (sagittal, coronal and transversal, overall 171 features)

2. geodesic distances to selected landmarks along the skeleton at different scales (original
scale, and subsampling to 1 cm and 2 cm resolutions, either by majority or maximum
voting, overall 110 features),

3. mean image intensity and bone proportion in a window around the center voxel (8
features),

4. spatial position of the voxel within the field of view (3 features).

Since the calculation of geodesic distances is computationally costly, we do not compute
them to all the landmarks but only to a selected number of landmarks that are well distributed
over the body. In subsampling of the bone mask using majority voting, a voxel is classified
as bone in the new mask if the majority of its parents are bones. In a subsampling using
maximum voting, a voxel is classified as bone if at least one of its parents is. The geodesic
distances are computed using the method described by Toivanen in [10].

Note that only bone voxels are presented to the Random Forest. We train a Random
Forest with 20 trees for each triplet of subjects from the training data, each tree being trained
with 10% of the voxels of the training set sampled randomly with replacement and evaluating
146 random subspaces at each split. Applied to a test set, it outputs a probability P of
belonging to each structure for each voxel that we can convert to a labelling by majority
voting.

2.3 Iterative triangulation using centroids
To account for local anatomy variability among subjects, local information can be extracted
from the first labelling and used to refine the classification, in particular in regions where
finer structures are present, e.g. the rib cage.

2.3.1 Centroid regularisation using a parts-based model

In the third step, we regularise the position of the centroid of each substructure using a parts-
based model. This allows us to disambiguate anatomical substructures in regions where the
label probability distribution outputted by the Random Forest is spread among several labels.

We construct a Conditional Random Field (CRF) with L nodes N . L is the number of
substructures in the skeleton. Each node l has Cl centroid candidates. The candidates c(l)
are obtained by thresholding the distribution probability computed by the Random Forest in
the previous step for each label and taking the centroid of each connected component. The
task of the CRF is to select the candidates that fit best the local and pairwise distributions of
centroids learned from the training data. We have experimented with different configurations
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of the model: fully connected, anatomy connected (only structures that anatomically touch
each other are neighbours in the graph), and torso connected (the model is fully connected in
the torso and anatomy connected elsewhere). The objective function to minimise is therefore:

E = ∑
l∈N

U(l,c(l))+ ∑
l1∼l2

B(l1,c(l1), l2,c(l2)) (2)

The unary term U is based for each label l and candidate c(l) on the distribution of la-
bel l modelled for each training subject s as a Gaussian Gs,l(c|µl ,Σl) and the aggregated
probability of CCc(l) from the Random Forest, where CCc(l) is the connected component
of the thresholded probability distribution of label l in the image to which c(l) belongs,
Pagg(c(l)) = ∑

x∈CCc(l)

P(l|x):

U(l,c(l)) =−log(Pagg(c(l)))− log(max
s

(Gs,l(c(l)|µl ,Σl))) (3)

The binary term B is based for each pair of labels l1, l2 on the distribution of the distances
between centroids of theses classes modelled as a Gaussian Gl1,l2(x|µl1,l2 ,Σl1,l2):

B(l1,c(l1), l2,c(l2)) =−log(Gl1,l2(c(l1)− c(l2)|µl1,l2 ,Σl1,l2)) (4)

We solve the optimisation problem using the implementation of alpha-expansion-fusion pro-
vided in [1].

2.3.2 Anatomical triangulation from centroids

As a final step, a second Random Forest classifier refines the dense labelling. While the
first classifier was only relying on distances to a few anatomical landmarks at joints or tips
of bones, we can now use distances to the nearby anatomical regions and substructures that
we have identified in the previous step. This is again an L-class segmentation problem and
we follow the same classification approach, now replacing the distances to the landmarks
in Sec. 2.2 by distances to the centroids of the 136 anatomical structures, leading to a total
set of 419 features. The centroids play the same role as the landmarks in the first Random
Forest, but they are more densely distributed and therefore capture more accurately the local
variations in anatomy among subjects. Again, the probabilistic labelling returned by the
classifier can either be converted to a hard labelling by majority voting or be used to iterate
the anatomical triangulation with a better estimation of the centroids.

3 Experiments
We have evaluated our method on 18 whole body CT scans. The volumes have an average
size of 512 × 512 × 1900 voxels with a voxel size of 1.3mm × 1.3mm × 1mm, and we
subsampled them by a factor of two. Around 1% of all voxels are bone. 136 bones or bone
segments have been manually labelled on each image. An example with shuffled labels can
be seen in Figure 1 (middle). We had for each dataset 57 landmarks distributed at meaningful
places over the whole body. Examples of landmarks can be seen in Figure 1 (left). All the
tests were run using six-fold cross-validation. It means that every prediction was made by
aggregating the results of the Random Forests trained on 15 subjects (3 subjects for each
forest) and totalising a total of 100 trees.
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We evaluate results using Dice scores (DS) weighted by the size of each structure, that
we calculate as follows for a labelling S and a ground truth G:

DS(S,G) =
100
|G| ∑

l∈G
|G == l| |S == l∩G == l|

|S == l|+ |G == l|
(5)

For visibility reasons, we show the results for 9 groups of substructures: whole body, skull,
left and right arm, left and right leg, pelvis, spine, ribs.

3.1 Anatomical triangulation from landmarks for probabilistic
labelling

In a first experiment, we measure the accuracy of the baseline Random Forest (Sec. 2.2).
Figure 2 (red) shows the results in terms of DS after converting the output of the Random
Forest into a labelling by majority voting. We obtain a mean overall DS of 88.77. The most
difficult region to annotate is the rib cage, where the mean DS is 66.88. However, most of the
bone metastasis in case of prostate cancer for example are located in the ribs and the spine.
It is therefore important to refine the results in these regions.

Note that the feature importances computed from the forests show that the most impor-
tant features are the distance and geodesic distance features. In particular, the distances to
landmarks in the feet-head direction are more important than in the left-right direction, and
both are more important than the distances to landmarks in the front-back direction. This
was expected, because the depth in the body provides useful location information for only
few bones (for example to differentiate between spine and sternum).

3.2 Iterative triangulation and parts-based model

Instead of converting the first probabilistic labelling to a hard labelling, we can apply the
iteration scheme described in Sec. 2.3 to refine it.

Using a threshold of 0.1 on the probability distributions, the parts-based model typically
had between 1 and 20 centroid candidates depending on the label. The Random Forest was
trained using centroids computed from the ground truth data. As an alternative to the parts-
based model for centroid regularisation, one can also compute the centroids directly from
the segmentation. We show results for both methods in Figure 2 (green and blue).

We observe that iterating, both with and without regularisation through a parts-based
model, improves the segmentation accuracy only for selected regions. It is however most
effective in the regions that are most important for oncological staging and difficult to label:
the rib cage and the spine. For example, the overall mean DS is 87.58 after three iterations
with regularisation. However, in the ribs, the mean DS increases from 66.88 for the baseline
to 72.67 after three iterations without regularisation and 76.81 after three iterations with
regularisation respectively. The iterative triangulation with regularisation therefore performs
better than without regularisation and achieves an improvement of 10 percentage points in
the ribs region, which makes the method very useful for oncology applications. Figure 3
also shows for one subject that the iterative process improves the accuracy in the ribs and the
pelvis regions.

Figure 4 shows that the fully connected and the torso connected models have similar
results, which are better than the results from the anatomically connected model. This is
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Figure 2: Weighted Dice scores for the segmentation of different groups of substructures by
the baseline Random Forest (red), after 3 iterations without centroid regularisation (green),
after three iterations with centroid regularisation (blue). The total number of substructures
of each group is given in brackets. More detailed results are shown in the supplementary
material.

(a) (b) (c) (d)

Figure 3: (a) Ground truth labelling. (b) Mislabelled regions (red) in the baseline labelling.
(c) Labelling after three iterations with regularisation. (d) Mislabelled regions (red) in the
labelling after three iterations with regularisation.
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Figure 4: Weighted Dice scores for the segmentation of different groups of substructures
with different configurations of the parts-based model after 3 iterations. "Direct" is iteration
without regularisation. The three other configurations are detailled in Section 2.3.1.

because even structures that are far away carry global anatomical information, and the more
connected models therefore recover better from any error made in the previous step

By selecting for each region the best suited method, we obtain a mean overall DS of
90.54.

We believe that a bigger training dataset and more precise ground truth labels will im-
prove the results of our experiments. In future work, we also want to compare our results
with the inter-rater labelling variation, and to evaluate the intra-patient variation for several
scans at different time points.

4 Conclusion
We have developed a novel approach for localising substructures in the whole skeleton. To
the best of our knowledge, only methods for certain subregions of the skeleton had been
published so far. Our method achieves a mean overall weighted Dice Score of 90.54 over
18 subjects, which is sufficient, for example, for measuring local tumour load in the staging
of bone tumour patients and to quantify local disease progression in longitudinal PET/CT
scans. In future work, we want to improve the iterative scheme by using auto-context, and
experiment with different fields of view.
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