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Abstract

The objective of this paper is to propose a new homography-based

approach to image-based visual tracking and servoing. The visual

tracking algorithm proposed in the paper is based on a new efficient

second-order minimization method. Theoretical analysis and compar-

ative experiments with other tracking approaches show that the pro-

posed method has a higher convergence rate than standard first-order

minimization techniques. Therefore, it is well adapted to real-time ro-

botic applications. The output of the visual tracking is a homography

linking the current and the reference image of a planar target. Us-

ing the homography, a task function isomorphic to the camera pose

has been designed. A new image-based control law is proposed which

does not need any measure of the 3D structure of the observed target

(e.g. the normal to the plane). The theoretical proof of the existence

of the isomorphism between the task function and the camera pose

and the theoretical proof of the stability of the control law are pro-

vided. The experimental results, obtained with a 6 d.o.f. robot, show

the advantages of the proposed method with respect to the existing

approaches.

KEY WORDS—visual tracking, visual servoing, efficient

second-order minimization, homography-based control law

1. Introduction

Vision-based control offers a wide spectrum of application

possibilities entailing the use of computer vision and control

theories : manipulation, medical robotics, automatic driving,

observation and surveillance by aerial robots, etc. The achieve-

ment of such complex applications needs the integration of vi-

sual tracking and visual servoing techniques. In this paper, we

describe our contributions to template-based visual tracking

algorithms and model-free vision-based control techniques.

These techniques are integrated in a unifying framework lead-

ing to generic, flexible and robust systems that can be used for

a variety of robotic applications.
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1.1. Visual tracking

Visual tracking is the core of a vision-based control system in

robotics (Hutchinson et al. 1996). When considering real-time

robotic applications, the main requirements of a tracking al-

gorithm are efficiency, accuracy and robustness. Visual track-

ing methods can be classified into two main groups. The first

group is composed of methods that track local features such

as line segments, edges or contours across the sequence (Is-

ard and Blake 1996� Torr anbd Zisserman 1999� Drummond

and Cipolla 1999). These techniques are sensitive to feature

detection and cannot be applied to complex images that do not

contain special sets of features to track. The second group is

composed of methods that only make use of image intensity

information. These methods estimate the movement, the defor-

mation or the illumination parameters of a reference template

between two frames by minimizing an error measure based

on image brightness. Many approaches have been proposed

to find the relationship between the measured error and the

parameters variation. Some methods compute (learn) this re-

lationship in an off-line processing stage: difference decom-

position (Gleicher 1997� Jurie and Dhome 2002), active blobs

(Sclaroff and Isidoro 1998), active appearance models (Cootes

et al. 1998). Although these methods are a possible solution

to the problem, they cannot be used in some real-time robotic

applications where the learning step cannot be processed on-

line. For example, consider a robot moving in an unknown en-

vironment that needs to instantaneously track an object sud-

denly appearing in its field of view. Alternatively, there are

methods that minimize the sum-of-squared-differences (SSD)

between the reference template and the current image using

parametric models (Lucas and Kanade 1981� Hager and Be-

humeur 1998� Shum ans Szeliski 2000� Baker and Matthews

2001). Many minimization algorithms could be used to esti-

mate the transformation parameters. Theoretically, the New-

ton method has the highest local convergence rate since it is

based on a second-order Taylor series of the SSD. However,

the Hessian computation in the Newton method is time con-

suming. In addition, if the Hessian is not positive definite, con-

vergence problems can occur. In this paper, we propose to use

an efficient second-order minimization method (ESM) (Malis
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2004) to solve the problem. The ESM method has a high con-

vergence rate like the Newton method, but the ESM does not

need to compute the Hessian. Due to its generality, the ESM

algorithm has been successfully used to build an efficient vi-

sual tracking algorithm in Benhimane and Malis (2004). The-

oretical analysis and comparative simulations with other track-

ing approaches show that the method has a higher conver-

gence rate than other minimization techniques. Consequently,

the ESM algorithm tracks with higher inter-frame movements

and it is well-adapted to real-time visual servoing applications.

1.2. Visual Servoing

Visual servoing uses the visual information tracked by one or

multiple cameras (Hashimoto 1993� Hutchinson et al. 1996) in

order to control a robot with respect to a target. This robotic

task can be considered as the regulation of a task function e

that depends on the robot configuration and the time (Sam-

son et al. 1991). In this paper, we consider eye-in-hand visual

servoing approaches that use the minimum amount of 3D in-

formation about the observed target. Our objective is to design

a visual servoing method that does not need any measure of the

3D structure of the target and that only needs the reference im-

age and the current image to compute the task function. In the

literature, the visual servoing methods are generally classified

as follows:

� 3D visual servoing: the task function is expressed in

the Cartesian space, i.e. the visual information acquired

from the two images (the reference and the current im-

ages) is used to explicitly reconstruct the pose (the trans-

lation and the rotation in Cartesian space) of the cam-

era (see, for example, Wilson et al. 1996� Martinet et

al. 1997� Basri et al. 1998� Taylor et al. 2000� Malis

and Chaumette 2002). The camera translation (up to a

scale factor) and the camera rotation can be estimated

through the Essential matrix (Longuet-Higgins 1981�
Hartley 1992� Faugeras 1993). However, the Essential

matrix cannot be estimated when the target is planar or

when the motion performed by the camera between the

reference and the current pose is a pure rotation. For

these reasons, it is better to estimate the camera transla-

tion (up to a scale factor) and the camera rotation using

a homography matrix (Malis et al. 2000).

� 2D visual servoing: the task function is expressed di-

rectly in the image, i.e. these visual servoing methods do

not need the explicit estimation of the pose error in the

Cartesian space (see, for example, Espiau et al. 1992�
Chaumette 2004). A task function isomorphic to the

camera pose is built. As far as we know, except for some

special “ad hoc” target (Cowan and Chang 2002), the

isomorphism is generally supposed true without any for-

mal proof. The real existence of the isomorphism avoids

situations where the task function is null and the camera

is not well positioned (Chaumette 1998). In general, the

task function is built using simple image features such as

the coordinates of interest points. Since the control takes

place in the image, the target has much more chance to

remain visible in the image.

� 2D 1/2 visual servoing: the task function is expressed

of remaining both in the Cartesian space and in the im-

age, i.e. the rotation error is estimated explicitly and the

translation error is expressed in the image (see, for ex-

ample, Malis et al. 1999� Deguchi 1998). These visual

servoing approaches make it possible not only to per-

form the control in the image but also it is possible to

demonstrate the stability and the robustness of the con-

trol law (Malis and Chaumette 2002).

We notice that, for any of the previous methods, we need a

measure (on-line or off-line) of some 3D information concern-

ing the observed target. In the 2D 1/2 visual servoing and 3D

visual servoing, the pose reconstruction using the homography

estimation is not unique (two different solutions are possible).

In order to choose the good solution, it is necessary to have an

estimate of the normal vector to the target plane. If the esti-

mate is very poor we could choose the wrong solution. In the

2D visual servoing, when considering for example points as

features, the corresponding depths are necessary to have a sta-

ble control law (Malis and Rives 2003). The 3D information

can be obtained on-line. However, the price to pay is a time

consuming estimation step. For example, when the target is

planar, many images are needed to obtain a precise estimation

of the normal to the plane.

In this paper, we present a new 2D visual servoing method

that makes it possible to control the robot by building a task

function isomorphic to the camera pose in the Cartesian space.

We have demonstrated that isomorphism exists between a task

function e (measured using the homography that matches the

reference target plane image and the current one) and the cam-

era pose in the Cartesian space, i.e. the task function e is null if

and only if the camera is back to the reference pose. Contrary

to the standard 2D visual servoing, we have demonstrated that

we do not need to measure any 3D information in order to

guarantee the stability of the control. The computation of the

control law is quite simple (we do not need either the estima-

tion of an interaction matrix or the decomposition of the ho-

mography) and, similarly to the task function, the control law

does not need any measure of 3D information on the observed

target.

For simplicity, in order to introduce our approach, in this

paper we consider planar targets with unknown 3D informa-

tion (i.e. the normal vector to the target plane is unknown).

The generalization of the new approach to non-planar targets is

straightforward since a homography related to a virtual plane

can also be measured if the target is non-planar (Malis et al.

2000).
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2. Modeling and Notation

As already mentioned in the introduction, we consider eye-in-

hand visual servoing methods. In other words, the robot is con-

trolled in order to position the current camera frame � to the

reference camera frame ��. We suppose that the only avail-

able information are an image �� of the scene at the reference

pose and a current image � of the observed scene (acquired in

real time).

2.1. Perspective Projection

Let � be a point in the 3D space. Its 3D coordinates are

� � � [X� Y � Z�]� in the reference frame ��. Using a per-

spective projection model, the point projects on a virtual plane

perpendicular to the optical axis and distant one meter from

the projection center in the point m� � [x� y� 1]� verifying:

m� � 1

Z�� �� (1)

We call ��m the reference image in normalized coordinates. A

pinhole camera performs a perspective projection of the point

� on the image plane �� [11]. The image coordinates p� �
[u� �� 1]� can be obtained from the normalized coordinates

with an affine transformation:

p� � Km� (2)

where the camera intrinsic parameters matrix K can be written

as follows:

K �
�
���

f f s u0

0 f r �0
0 0 1

�
��� (3)

where f is the focal length in pixels, s represents the default

of orthogonality between the image frame axis, r is the aspect

ratio and [u0 �0] are the coordinates of the principal point (in

pixels).

Let R � ���3� and t � �3 be respectively the rotation

and the translation between the two frames � and ��. In the

current frame � , the point � has the following coordinates

� � [X Y Z ]� and we have:

� � R� � � t� (4)

Let u � [ux uy uz]
� be the unit vector corresponding to the

rotation axis and � (� �]��� �[) be the rotation angle. Setting

r � �u, we have:

R � exp�[r]	� (5)

where exp is the matrix exponential function and where the

skew matrix [r]	 is defined as follows:

[r]	 �
�
���

0 �rz �ry�rz 0 �rx�ry �rx 0

�
��� � (6)

Fig. 1. Projection model and homography between two images

of a plane

The point � projects on the current normalized image �m in

m � [x y 1]� where:

m � 1

Z
� (7)

and projects on the current image � in p � [u � 1]� where:

p � Km� (8)

2.2. Homography Between Two Images of a Plane

Let us suppose that the point � belongs to a plane � . Let n�
be the normal vector to � expressed in the reference frame ��
and d� is the distance (at the reference pose) between the plane

� and the center of projection. If we choose n� such that:

��n��� � 
n��n� � 1

d� (9)

then, we can write:

n��� � � 1� (10)

By using equations (1), (4), (7) and (10), we obtain the follow-

ing relationship between m and m�:
Z

Z�m � Hm� (11)

where the homography matrix H can be written as follows:

H � R� tn��� (12)

By using equations (2), (8) and (11), we obtain the follow-

ing relationship between p and p�:
Z

Z� p � Gp� (13)
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where the matrix G can be written as follows:

G � KHK�1� (14)

Given two images � and �� of a planar target, it is possible

to compute the homography matrix G up to a scale factor.

We choose the scale factor of the matrices G and H such

that the determinants of H and G are equal to 1. Then the ma-

trices H and G belong to the Special Linear group ���3� of

dimension 3. This choice is well justified since det�H� � 0 (or

det�G� � 0) happens only when the point� passes though the

plane � .
Given the matrices G and K, we compute the matrix H up

to a scale factor. Decomposing the matrix H to obtain the ro-

tation R and the translation t has more than one solution [11].

In general, given the matrix K, four solutions �Ri � ti � n�i ,
i � �1� 2� 3� 4 are possible but only two are physically ad-

missible. An approximation of the real normal vector n� to the

target plane makes it possible to choose the good pose.

The matrix G � �gi j � defines a projective transformation

in the image. A group action w can be defined from ���3� on

�2:

w : ���3�	 �2� �2� (15)

For all G � ���3�, w�G� is a �2 automorphism:

w�G� : �2 � �2

p� �� p � w�G��p�� (16)

such that:

p � w�G��p�� �
�
����

g11 u��g12 ���g13
g31 u��g32 ���g33

g21 u��g22 ���g23
g31 u��g32 ���g33

1

�
���� �

Let I be the identity matrix. We have the following properties:

� �p � �2:

w�I��p� � p (17)

� �p� � �2 and �G1� G2 � ���3�:
w�G1��w�G2��p��� � w�G1� �w�G2��p�� (18)

� w�G1G2��p�� (19)

� �G � ��3:

�w�G���1 � w�G�1�� (20)

2.3. The Image Model

A (n 	 m) image �� can be considered as a (n 	 m) matrix

containing the pixel intensities. The entry ���u�� ��� is the

intensity of the pixel located at the line u� and the column ��.
We suppose there exists a regular function I �:

I � : �2 � �
p� � [u� �� 1]� �� I ��u�� ��� (21)

that verifies ��u�� ��� � �1� 2� ���� n 	 �1� 2� ����m, we have

I ��p�� � ���u�� ���. For the non-integer values of �u�� ���,
I ��p�� is obtained by interpolating ���u�� ��� where �u�� ���
are integer. In this paper, we suppose that the “image constancy

assumption” is verified, i.e., the two projections p� and p of

the same 3D point � in the images �� and � have the same

intensity:

���p�� � ��p�� (22)

3. ESM Homography-based Visual Tracking

3.1. Problem Statement

In this section, we suppose that the object we aim to track is

planar. The object is projected in the reference image �� in

some region of q pixels. This region is called the reference

template. Since the object is supposed to be planar, there is

a homography G that transforms each pixel p�i of the refer-

ence pattern into its corresponding pixel in the current image

�. Tracking the reference template in the current image � con-

sists in finding the projective transformation G � ���3� that

transforms each pixel p�i of the reference pattern into its corre-

sponding pixel in the current image �, i.e. finding the homog-

raphy G such that �i � �1� 2� ���� q:
�
�
w
�
G
	 �p�i �	 � ���p�i � (23)

Suppose that we have an approximation �G of G, the problem

consists in finding an incremental transformation G�x� (where

the �8	1� vector x contains a local parameterization of ���3�)
such that the difference between the region of the image �
(transformed with the composition w� �G� � w�G�x��) and the

corresponding region in the image �� is null. Tracking consists

in finding the vector x such that �i � �1� 2� ���� q, we have:

yi �x� � � 
w� �G� �w�G�x���p�i �
�� ���p�i � � 0� (24)

Let y�x� be the (q	1) vector containing the image differences:

y�x� � � y1�x� y2�x� ��� yq�x�
� � (25)

Then, the problem consists in finding x � x0 verifying:

y�x0� � 0� (26)

Since the matrix �G � ���3�, i.e. det� �G� � 1 by construction,

it is evident that the solution to the problem verifies:

G�x0� � �G�1G� (27)
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The system (26) is generally nonlinear and many methods

could be used to solve the problem. However, due to real-time

constraints the problem is often solved by using an iterative

minimization after linearizing the image signal with respect to

the transformation parameters.

3.2. System Linearization

Let the �q 	 8� matrix J�x� be the Jacobian matrix, i.e it is the

gradient of the vector y�x� with respect to the vector x:

J�x� � �xy�x�� (28)

Let the �q 	 8� matrix M�x1� x2� defined as:

M�x1� x2� � �x1
�J�x1�x2� � (29)

It is possible to linearize the vector y�x� about x � 0 using the

second-order Taylor series approximation:

y�x� � y�0�� J�0� x� 1

2
M�0� x� x�O��x�3� (30)

where O��x�i � is a remainder of order i . For x � x0, the sys-

tem (26) can be written:

y�x0� � y�0���J�0�� 1

2
M�0� x0�

�
x0 � 0� (31)

3.3. Iterative Minimization

In general, the system (31) is solved using a sum-of-squared

differences minimization. It consists in solving iteratively the

following function:

f �x� � 1

2
�y�0�� J�0�x� 1

2
M�0� x�x�2� (32)

A necessary condition for a vector x � x0 to be a local or a

global minimum of the cost function f is that the derivative of

f is null at x � x0, i.e.:

�x f �x��x�x0
� 0� (33)

Standard Newton minimization solves the system (33) itera-

tively. At each iteration, an incremental x0 is estimated:

x0 � �S�1J�0��y�0� (34)

where the �8 	 8� matrix S depends on the Hessian matrices
�2 yi �x�
�x2 and is supposed to be invertible:

S � J�0��J�0�� q�
i�0

�2 yi �x�
�x2

����
x�0

yi �0�� (35)

Once x0 estimated, the homography matrix �G is updated as

follows: �G�� �G G�x0� (36)

where the arrow�� denotes the update assignment (the left

and the right versions of �G are respectively the new and the

old estimates).

The loop stops if the estimated value of x0 becomes too

small.

The Newton minimization has a quadratic convergence in

the neighborhood of x0. In addition, if the cost function f �x�
is convex quadratic, the global minimum can be reached in

only one iteration. However, when the cost function f �x� is

not convex quadratic, convergence problems may happen if

the matrix S is not definite positive. Furthermore, Newton

method needs the computation of the Hessian matrices. For

these reasons, many methods have been proposed to approxi-

mate the matrix S with a definite positive matrix �S. Then, in-

stead of being second-order approximations (as the Newton

method does), these methods are first-order approximations

(30). Among these methods, there are:

� Gradient descent:

S � �S � 	 I where 	 
 0 (37)

� Gauss–Newton:

S � �S � J�0��J�0� (38)

� Levenberg–Marquardt:

S � �S � J�0��J�0�� 	 I where 	 
 0� (39)

In the literature, many template-based tracking algorithm

use such approximations. For example, in Shum and Szeleski

(2000), the authors use the Gauss–Newton approximation with

a compositional homography update (as described in the equa-

tion (36)). In Lucas and Kanade (1981) and Shi and Tomasi

(1994) the authors use also the Gauss–Newton approximation

with an additional homography update.

There are also algorithms that approximate the current Ja-

cobian J�0� (which varies from one iteration to another) by

a constant Jacobian (Hager and Belhumeur 1998� Baker and

Matthews 2001):

J�0� � �J� (40)

This makes the algorithm faster since the matrix J�0� and the

inverse of the matrix �S are computed once for all. However,

the price to pay is a smaller convergence region.

The second-order approximation of the cost function is

used very little since it needs the computation of the Hessian

matrices and convergence problems may happen if the matrix

S is not definite positive.
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3.4. The ESM Visual Tracking Algorithm

We present now an efficient algorithm that solves the second

order approximation of the system (26), this method will be

called “ESM visual tracking algorithm”. The proposed method

does not need the computation of the Hessian matrices.

3.4.1. The Lie Algebra ��(3)

The projective transformation matrix G�x� is in the group

���3� which is a Lie group. The Lie algebra associated to this

group is ���3�. Matrices in this algebra are �3	 3� with a null

trace. The exponential map is a homeomorphism between a

neighborhood of I � ���3� and a neighborhood of the null

matrix 0 � ���3�.
Let �A1� A2� ���� A8 be a basis of the the Lie algebra ���3�.

A matrix A�x� � ���3� can be written as follows:

A�x� � 8�
i�1

xi Ai � (41)

A projective transformation G�x� � ���3� in the neighbor-

hood of I can be parameterized as follows:

G�x� � exp �A�x�� � ��
i�0

1

i!
�A�x��i � (42)

We use the following ���3� basis matrices:

A1 �
�
���

0 0 1

0 0 0

0 0 0

�
��� A2 �

�
���

0 0 0

0 0 1

0 0 0

�
���

A3 �
�
���

0 1 0

0 0 0

0 0 0

�
��� A4 �

�
���

0 0 0

1 0 0

0 0 0

�
���

A5 �
�
���

1 0 0

0 �1 0

0 0 0

�
��� A6 �

�
���

0 0 0

0 �1 0

0 0 1

�
���

A7 �
�
���

0 0 0

0 0 0

1 0 0

�
��� A8 �

�
���

0 0 0

0 0 0

0 1 0

�
��� �

3.4.2. The ESM Iterative Minimization

We use the homography Lie algebra parameterization de-

scribed above. In the second-order Taylor series approximation

of the vector y�x� about x � 0 (30), the computation of the ma-

trix M�0� x� needs the computation of the Hessian matrices of

the vector y�x�. However, by using the first-order Taylor series

approximation of the vector J�x� about x � 0:

J�x� � J�0��M�0� x��O��x�2� (43)

the equation (30) can be written without computing the

Hessian matrices of y�x�:

y�x� � y�0�� 1

2
�J�0�� J�x�� x�O��x�3�� (44)

It is a second-order approximation of y�x� about x � 0. For

x � x0, we have:

y�x0� � y�0�� 1

2
�J�0�� J�x0�� x0� (45)

Given the expressions for J�0� and J�x0� in Appendix A the

sum of the Jacobians can be written as follows:

J�0�� J�x0� � J�JwJG � J��JwJG0
� (46)

Using the formula (72), the equation (45) can be written as

follows:

y�x0� � y�0�� 1

2
�J� � J��� Jw JG x0� (47)

Using this approximation, the system (26) can be solved itera-

tively using the least-square method. Let Jesm be the following

matrix:

Jesm � 1

2
�J� � J��� Jw JG� (48)

The cost function to be minimized can be written as follows:

f �x� � 1

2
�y�0�� Jesmx�2� (49)

This cost function has a local or a global minimum in x � x0

verifying:

x0 � J�esmy�0� (50)

where J�esm is the pseudo-inverse of Jesm . Iteratively, we esti-

mate x0, then we update �G (36). For each �G, y�0� and J� are

computed. The loop stops when x0 becomes too small.

Given G, using an approximation of the matrix K, we com-

pute the matrix H � K�1GK. Then, the matrix H is used for

computing the visual servoing control law described in the next

section.
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4. Homography-based 2D Visual Servoing

In this section, we present a new visual servoing method that

does not need any measure of the structure of the observed

target. In order to do that, we have to define an isomorphism

between the camera pose and the visual information extracted

from the reference image and the current image only. Given

this isomorphism, we compute a stable control law which also

relies on visual information only.

4.1. Isomorphism Between Task Function and Camera Pose

The two frames � and �� coincide, if and only if, the ma-

trix H is equal to the identity matrix I. Using the homography

matrix H, we build a task function e � �6 locally isomorphic

to the camera pose (since we have restricted � �� ��). The

task function e is null, if and only if the camera is back to the

reference pose.

Theorem 1 Task function isomorphism.

Let R be the rotation matrix and t be the translation vector

between �� et � , where R � exp
�� [u]		, � � ]��� �[ and

let � � � [X� Y � Z�] be the coordinates of a certain point

� � � in the reference frame ��. We define the task function

e as follows:

e �
�

e�
e�

�
�
�
�t� �R� I�� ��Z�
2 sin���u� [n�]	 t

�
(51)

where n� is the normal vector to the plane � expressed in the

reference frame��. The function e is isomorphic to the camera

pose, i.e. e � 0, if and only if, � � 0 et t � 0.

The proof of the theorem is given in Appendix B. We can

demonstrate also that the task function e can be computed us-

ing the two images � and �� only, i.e. without directly mea-

suring the 3D structure of the target (n� et Z�). Given the ho-

mography matrix H, we can write:

e� � �H� I�m� (52)

[e�]	 � H�H�� (53)

See the Appendix B for the proof of these equations. If we have

e� � 0, then the two projections � � and � of the same 3D

point� coincide. And if we have e� � 0, then the homography

matrix H is symmetric.

In this paper, for simplicity, we consider only this isomor-

phism. However, there exists a group of isomorphisms that can

be built using the homography matrix H. For example, we can

choose the task function e as follows:

e� � m�Hm�
m�m

m�m�

[e�]	 � H�H�

where m � 1
n

�n
i�1 mi and m� � 1

n

�n
i�1 m�i (i.e. the center

of gravity of a cloud of points), and where m�i and mi are cor-

responding points. We can demonstrate also that this function

is isomorphic to the camera pose.

4.2. The Control Law

The derivative of the task function with respect to time �e can

be written as follows:

�e � L

�
�

�

�
(54)

where � is the camera translation velocity, � is the camera

rotation velocity and L is the (6 	 6) interaction matrix. The

matrix L can be written as follows:

L �
�
� 1Z� � [e� �m�]	

[n�]	 � [n�]	 [t]	 � 2L�

�
� (55)

where the (3	 3) matrix L� can be written as follows:

L� � I� sin���
2

[u]	 � sin2

��
2

�
�2I� [u]2	�� (56)

The interaction matrix L does not need to be estimated. It is

only useful to analytically prove the following theorem on the

stability of the control law:

Theorem 2 Local stability.

The control law:�
�

�

�
� �
�
� ��I 0

0 ��I

�
�
�

e�
e�

�
(57)

where �� 
 0 and �� 
 0 is locally stable.

See the Appendix B for the proof. This control law only de-

pends on the task function. Consequently, it can be computed

using the two images � and ��. With such a control law, the

task function e converges exponentially to 0. The local stabil-

ity of the control law is guaranteed for all n� and for all � �.
By choosing �� 
 0 and �� 
 0 such that �� �� ��, one can

make e� and e� converge at different speeds.

5. Simulation Results

5.1. Advantages of the ESM Algorithm

The main advantage of having a second-order approximation is

the high convergence rate. Another advantage is the avoidance

of local minima close to the global one (i.e. when the second-

order approximation is valid). Here, we show these advantages

with the help of two simple examples.
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5.1.1. High Convergence Rate

Consider a (4	 1) vector function y�x� quadratic in a (2	 1)

parameter vector x. The simulation is repeated 4 times with

different starting points: x0 � ���1�5��1�5�. Suppose we

can measure the constant Jacobian J�0� and the varying Jaco-

bian J�x0�. The results for six different minimization methods

are given in Figure 2. The contours represent isolines of the

SSD (i.e. the cost function has the same value for each point

of the contour) while the other lines represent the paths for

each starting point. Obviously, the ideal path (i.e. the short-

est one) would be a straight line from x0 to 0. Figure 2(a)

shows that the varying Steepest Descent method always moves

in a direction perpendicular to the isolines. For this reason, it

has a slow convergence rate and cannot reach the minimum

following a straight line. The paths for the constant Steep-

est Descent method are even longer (see the path lengths in

Figure 2(b)). The constant (Figure 2(d)) and the varying (Fig-

ure 2(c)) Gauss–Newton methods perform better than the con-

stant and the varying Steepest Descent methods respectively.

In fact, the constant and the varying Gauss–Newton methods

use a rough approximation of the Hessian. An ill conditioned

and indefinite Hessian matrix causes oscillations of the New-

ton method in Figure 2(e). Finally, the ESM method gives the

best solution since the paths in Figure 2(f) are straight lines.

Indeed, when the function y�x� is exactly quadratic we can

correctly estimate the displacement in only one step and thus

the correct descent direction regardless of the shape of the iso-

lines.

5.1.2. Avoiding Local Minima

In the second simulation, we choose a different quadratic func-

tion y�x� such that the corresponding SSD cost function has a

local minimum very close to the global minimum. The New-

ton method and all methods with varying Jacobian fall into

the local minimum when the starting point is close to it (see

Figures 3(a), 3(c) and 3(e)). In this case, methods with con-

stant Jacobian could diverge (see Figures 3(b) and 3(d)). In-

deed, the constant Jacobian approximation is valid only in a

neighborhood of the true solution. On the other hand, the ESM

method follows the shortest path (see Figure 3(f)). Thus, if

y�x� is locally quadratic the ESM method is able to avoid lo-

cal minima. Obviously, if the local minimum is far from the

true minimum the second-order approximation is not valid any

more.

5.2. Comparison with Standard Tracking Methods

We compared the ESM method with the constant Gauss New-

ton method (CGN) proposed in Baker and Matthews (2001)

and with the varying Gauss Newton method (VGN) proposed

Fig. 2. Comparing the behavior of 6 different minimization

methods.

in Shum and Szeliski (2000). We have used the Matlab soft-

ware available on the web page of Dr Simon Baker at the

Robotics Institute of the Carnegie Mellon University. Thus,

the performance of the algorithms were compared with the

same experimental setup. In order to have a ground truth,

the ESM algorithm was tested by warping the image shown

in Figure 4(a). The (124 	 124) template illustrated in Fig-

ure 4(b) was selected in the center of the image. The com-

putational complexity of the ESM algorithm is equivalent to

the VGN method, which is higher than the CGN method. In

order to have the same execution time per iteration, we can

use a smaller subset (25 %) of the template for computing

the Jacobians and the estimated displacement. The template

was warped 1000 times using different random homographies.

Similarly to Baker and Matthews (2001), the homography was

computed by adding a Gaussian noise to the coordinates of

the four corners of the template. The standard deviation � of

the Gaussian noise was increased from 1 to 12. Figure 4(c)

plots the frequencies of convergence (% over 1000 tests). As
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Fig. 3. Comparing the behavior of 6 different minimization

methods.

� increases, the frequency of convergence of the CGN and

the VGN methods decay quicker than the frequency of conver-

gence of the ESM method. At the final � � 12, the frequency

of convergence of the CGN and the VGN methods are only

40% while the frequency of convergence of the ESM method

is 80%. Figure 4(e) shows the average convergence rate (over

the converged tests) of the algorithms for � � 12. The initial

value of the SSD is the same for the three algorithms but the

speed of convergence of the ESM method is much higher. This

means that we can perform real-time tracking at higher rates.

Since our objective is to track objects in real time, it is very

important to measure the residuals after each minimization. In-

deed, since the number of iterations is fixed by the frame rate,

the error will cumulate. Figure 4(f) plots the average resid-

ual over all the tests for which the algorithms did not diverge

(we consider that the algorithm diverges when the final SSD

is bigger than the initial SSD). Obviously the SSD increases

with the amplitude of the initial displacement. However, the

ESM method performs much better than the CGN method and

Fig. 4. Comparison between ESM and standard methods.

the VGN method. Finally, we tested the robustness of the al-

gorithms to sampling. Figure 4(d) plots the frequency of con-

vergence for � � 12 against the sampling rate r between the

size of the subset used in the algorithm and the size of the tem-

plate, e.g. for 1/1 we use all the template while for 1/10 we use

1 % of the template (1 pixel used every 10 pixels of the image

per line and per column). The ESM algorithm is more robust

to sampling. For r � 110, the frequency of convergence of

the ESM method is almost the same as the two other methods

without sampling. Thus, we can obtain the same frequency of

convergence with a faster algorithm.

6. Experimental Results

6.1. Visual Tracking

The second-order tracking was tested on sequences with mov-

ing planar objects. Five images were extracted from each se-

quence and they are shown in the first row of Figure 5 and
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Fig. 5. Tracking a template on a planar object.

Fig. 6. Tracking a template on the back of a car.

Figure 6. In the first experiment, the template to track was a

(150	150) window shown in Figure 5(f). The red windows in

the first row of Figure 5 are warped back and shown in the sec-

ond row of Figure 5. Despite illumination changes and image

noise, the warped windows are very close to the reference tem-

plate proving that the tracking is accurately performed. Dur-

ing the sequence, a generic projective motion and several light

variations were observed. For example, Figures 5(b) and 5(c)

show translation and rotation around the �z and �x axis respec-

tively, while Figure 5(d) and 5(e) show a rotation around the �y
and varying illumination (the image becomes darker, the im-

age becomes lighter). In the second experiment, we tracked a

(43	43) template on the back of a car with a camera mounted

on another car (see Figure 6(a) to (e)). Again, the tracking is

accurately performed in spite of the template changes due to

people movement that we can see through the window of the

car (see Figure 6(f) to (j)).

6.2. Visual Tracking and Servoing

We tested the proposed visual servoing on the 6 d.o.f. robot of

the LAGADIC research team at INRIA Rennes. The robot is

accurately calibrated and it provides a ground truth for measur-

ing the accuracy of the positioning task. A calibrated camera

was mounted on the end-effector of the robot and a reference
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Fig. 7. Experiment 1: Camera positioning with respect to a

planar object without approximating the normal vector to the

object plane.

image was captured at the reference pose. The positioning a

planar target was used for the positioning task. We started from

another pose (the initial pose) which allowed us to see the ob-

ject from a different angle. The robot was controlled using the

control law (57) with �� � �� � 0�1 in order to return to the

reference pose. At the initial pose (the translation displacement

is 0.68 m and the rotation displacement is 96 degrees), we can

see the projective transformation of the area of interest (the

rectangle in the center in Figures 7(a) and 7(b) corresponds

to the desired position). We used the ESM1 visual tracking

algorithm (Benhimane and Malis 2004) to track the area of in-

terest and at the same time to estimate the homography matrix

H. Given the matrix H, the control law was computed. As the

control point (m� in the equation (52)) we used the center of

gravity of the area. At the convergence, the robot is back to its

1. The ESM visual tracking software can be downloaded from the following

web-page: http://www-sop.inria.fr/icare/personnel/malis/software/ESM.html

Fig. 8. Experiment 2: Camera positioning with an uncalibrated

camera without approximating the normal vector to the object

plane.

reference pose and the visual information coincides with the

visual information of the reference pose (see figure 7(b)). The

control law is stable: the translation figures 7(c) and the rota-

tion 7(d) velocities converge to zero. As shown in Figures 7(e)

and 7(f), the camera displacement converge to zero very accu-

rately (less than 1 mm error for the translation and less that 0.1

degree for the rotation).

A second experiment was performed under similar condi-

tions (the same initial camera displacement, an unknown nor-

mal vector to the plane, an unknown camera/object distance...).

In contrast to the previous experiment, the positioning task was

performed with respect to a different target (see Figure 8(a)).

We also used a very poor estimation of the camera parameters:
�f � 800, �r � 0�5, �u0 � 100, ��0 � 200 (the calibrated pa-

rameters were f � 592, r � 0�96, u0 � 198, �0 � 140).

Figures 8(c) and 8(d) show that the control law is robust to

camera calibration errors: the translation and rotation veloc-

ities converge to zero. At the convergence, the visual infor-

mation coincides with the visual information of the reference
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image (see Figure 8(b)). Again, Figures 8(e) and 8(f) show that

the camera displacement converges to zero (as in the previous

experiment an error of approximately 1 mm error for the trans-

lation 0.1 degrees for the rotation).

7. Conclusions

In this paper, we have described two contributions to vision-

based robot control. First, we have proposed a real-time algo-

rithm for tracking images of planar targets. We performed an

efficient second-order approximation of the image error using

only first-order derivatives (the ESM algorithm). This avoids

the computation of the Hessian of the cost function. At the

same time, the second-order approximation allows the tracking

algorithm to achieve a high convergence rate. This is very im-

portant if we want to track objects in real time. Secondly, this

is the first time that a homography-based 2D approach to vi-

sual servoing that do not need any measure of the 3D structure

of the observed target has been proposed. We have designed a

simple and stable control law that directly uses the output of

the ESM visual tracking (i.e. the homography). We think that

this approach can open new research directions in the field of

vision-based robot control. Indeed, as far as we know, none

of the existing methods are able to position a robot with re-

spect to an object without measuring, on-line or off-line, some

information on its 3D structure.

Many improvements in the proposed methods should be

studied. The ESM algorithm could be extended in order to take

into account illumination changes or could be transformed into

a robust algorithm in order to take into account partial occlu-

sions. The control law could be improved using a trajectory

planning in order to have a larger stability region and to take

into account visibility constraints.

Appendix A

A.1. Jacobians Computation

The objective of this paragraph is to compute the Jacobian ma-

trix J�x� corresponding to the derivative of y�x� at x � 0 and

at x � x0 (x0 verifies the equation (27)).

A.1.1. The Current Jacobian

The i th line of the matrix J�0�, called the current Jacobian, can

be written as follows:

�x yi �x��x�0 � �x�
�

w� �GG�x���p�i �
����

x�0
� (58)

Thanks to the property (19), we have:

�x yi �x��x�0 � �x�
�

w� �G��w�G�x���p�i ��
����

x�0
� (59)

The i th line of the Jacobian J�0� can be written as the product

of three Jacobians:

�x yi �x��x�0 � J� Jw JG� (60)

1. J� is a �1�3�matrix corresponding to the spatial deriv-

ative of the current image warped using the projective

transformation w� �G�:
J� � �z�

�
w� �G��z�

����
z�p�i
� (61)

Since p�i is in �2 it is a �3�1� vector with the third entry

equal to 1. The third entry of J� is equal to zero.

2. The Jacobian Jw is a �3� 9� matrix:

Jw � �Zw�Z��p�i �
��
Z�G�0��I

� (62)

For p�i �
�
u�i ��i 1
��

, this Jacobian can be written as

follows:

Jw �

�
����

p��i 0 �u�i p��i
0 p��i ���i p��i
0 0 0

	



� � (63)

3. The Jacobian JG is a �9 � 8� matrix that can be written

as follows:

JG � �xG�x��x�0 (64)

Using (41) and (42), this Jacobian can be written as:

JG �
�

[A1]� [A2]� ��� [A8]�


(65)

where [Ai ]� is the matrix Ai reshaped as a vector (the

entries are picked line per line).

The two Jacobians Jw and JG are constants. Thus, they can

be computed once and for all. The Jacobian J� has to be com-

puted at each iteration since it depends on the updated value

w� �G�.

A.1.2. The Reference Jacobian

Using equations (19), (20) and (23), yi �x� can be written as

follows:

yi �x� � ��
�

w�G�1 �GG�x���p�i �
�
� ���p�i �� (66)

Using equation (27), the i th line of the Jacobian J�x0�, called

the reference Jacobian, can be written as follows:

�x yi �x��x�x0
� �x��

�
w�G�x0��1G�x���p�i �

���
x�x0
� (67)

The i th line of the Jacobian can be written as the product of

three Jacobians:

�x yi�x��x�x0
� J�� Jw0

JG0
� (68)
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1. J�� is a �1	3�matrix corresponding to the spatial deriv-

ative of the reference image:

J�� � �z�� �z���z�p�i � (69)

As for J� , the third entry of J�� is equal to zero.

2. The Jacobian Jw0
is a �3	 9� matrix:

Jw0
� �Zw�Z��p�i ���Z�G�x0��1G�x0��I

� Jw� (70)

3. The third Jacobian JG0
is a �9	 8� matrix:

JG0
� �xG�x0��1G�x���

x�x0
� (71)

The Jacobians J�� and Jw0
are constants and can be com-

puted once and for all. The Jacobian JG0
is complicated and

generally depends x0. Using the Lie algebra and the exponen-

tial map properties, we can show that:

JG0
x0 � JG x0� (72)

Appendix B

B.1. The Task Function is a Function of Image Measures

Only

Using the equation (51), the vector e� can be written as fol-

lows:

e� � �t� �R� I�� ��Z� � �R� � � t�� ��Z��
Using the equation (4), e� becomes:

e� � �� �� ��Z��
Plugging equations (1) and (7) gives:

e� � Z

Z�m�m��
Thanks to (11), e� can be written using H and m� only:

e� � Hm� �m� � �H� I�m��
Thanks to equation (12), we have:

H�H� � R� tn�� �R� � n�t��
Using the Rodriguez formula for the rotation matrix R:

R � I� sin��� [u]	 � 2 cos2

��
2

�
[u]2	

we can write:

R�R� � 2 sin��� [u]	 �

Given the following property:

tn�� � n�t� � ��n��	 t

	 �

The antisymmetric part of the matrix H can be written as:

H�H� � �2 sin���u� �n��	 t

	 �

Consequently, given equation (51), we have:

H�H� � [e�]	 �

B.2. The Task Function is Isomorphic to the Camera Pose

In order to simplify the proof of Theorem (1), we prove three

simpler propositions.

Proposition 1 The matrix HH� has one eigenvalue equal

to 1. The eigenvector corresponding to the eigenvalue is v ��
Rn��	 t.

Proof of proposition 1 Using equation (12), we have:

HH� � �R� tn����R� � n�t���
Since we have R � ���3� then RR� � I. Thus, we have:

HH� � I� t�Rn��� � �Rn� � �n��2t�t��
The matrix HH� is the sum of I and a rank 2 matrix. Thus,

one eigenvalue of HH� is equal to 1. Setting v � �Rn��	 t,

we have:

�Rn���v � 0 and t�v � 0

showing that v is an eigenvector of HH�:

HH�v � v�

Proposition 2 If H � H� and sin��� �� 0, then n�� u � 0,

t� u � 0 and n�� v � 0 (where v � �Rn��	 t).

Proof of proposition 2 If we have H � H�, then we have:

2 sin���u� �n��	 t � 0� (73)

By multiplying each side of the equation (73) by n��, we ob-

tain:

2 sin���n��u � 0�
Since we have supposed that sin��� �� 0, we have:

n��u � 0�
Similarly, by multiplying each side of the equation (73) by t�,

we obtain:

t�u � 0�
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Finally, using the Rodriguez formula for the rotation matrix,

we have:

Rn� � �I� sin��� [u]	 � 2 cos2

��
2

�
[u]2	
�

n�

� n� � sin��� [u]	 n� � 2 cos2

��
2

�
[u]2	 n�

� n� � sin��� [u]	 n� � 2 cos2

��
2

��
uu� � I

	
n��

If we have n��u � 0, then we have:

Rn� � n� � sin��� [u]	 n� � 2 cos2

��
2

�
n�� (74)

The antisymmetric matrix associated to the vector Rn� is:

�
Rn��	 � �n��	 � sin��� �[u]	 n��	 � 2 cos2

��
2

��
n��	]

and since
�
[u]	 n��	 � n�u� � un��, we can write:

�
Rn��	 � �n��	 � sin��� �n�u� � un��	

� 2 cos2

��
2

��
n��	]�

By multiplying both sides of the equation by n��, we obtain:

n�� �Rn��	 � �n��2 sin���u�� (75)

By multiplying both sides of the equation by t, we obtain:

n�� �Rn��	 t � ��n���2 sin���u�t�
Since u�t � 0, then we prove that:

n��v � 0�

Proposition 3 If H � H�, v � �Rn��	 t � 0 and sin��� �� 0

then det�H� � �1.

Proof of proposition 3 If v � �Rn��	 t � 0 then it exists

	 
 0 such that:

t � 	Rn��
From equation (75), we obtain:

�
n��	Rn� � 
n�� �Rn��	

�� � ��n���2 sin���u� (76)

Then, from equation (73) and equation (76), we obtain:

2 sin���u � � �n��	 t � �	 �n��	Rn� � �	 ��n���2 sin���u�

By multiplying both sides of this equation by u�, we obtain:

2 sin��� � �	 sin����n��2�
Since we supposed sin��� �� 0, then we can write:

	 � � 2�n��2
and finally the determinant of the matrix H verifies:

det�H� � 1� n��R�t � 1� 	�n��2 � �1� (77)

Having a matrix H with negative determinant means that the

current frame � is on the opposite side of the target plane.

This is impossible since it means that we cannot see the target

in the image any more. This is the reason why we can always

suppose det�H� 
 0.

Proof of theorem 1 It is evident that if � � 0 and t � 0

then e � 0. We must prove now that if e � 0, then � � 0

and t � 0. Let us suppose that e � 0. It is evident that if

� � 0 then t � 0 and if t � 0 then � � 0. Now, let us

suppose that e � 0 and t �� 0 and � �� 0. If e� � 0 then

Hm� � m�. Thus, H has an eigenvalue equal to 1 and the

vector m� is the corresponding eigenvector. The vector m� is

also the eigenvector corresponding to the eigenvalue 1 of the

matrix H2. Since e� � 0 then H � H� and H2 � HH�.

Given Proposition 2, m� is then collinear to the vector v ��
Rn��	 t. Since det�H� 
 0, this vector is different from zeros

(see Proposition 3). On the other hand, Proposition 2 shows

that in this case n��m� � Z� � 0. This is impossible since by

definition Z� 
 0. Thus, it is impossible that e � 0 and t �� 0,

� �� 0.

B.3. The Interaction Matrix

Using equation (51), we have:

�e� � ��t� �R� ��Z�
� �� � [�]	 t� [�]	R� ��Z�
� �Z� � [�]	 �t� R� ��Z�
� �Z� � [�]	 �e� �m�	
� �Z� � �e� �m��	�

and:

�e� � 2
d sin���u

dt
� [n]	 �t

� 2L� � [n]	 �� � [�]	 t�
� [n]	 � � �2L� � [n]	 [t]	��

Finally, we obtain equation (54) and the interaction matrix in

equation (55).
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B.4. Proof of the Local Stability of the Control Law

Proof of theorem 2 After linearizing equation (54) about

e � 0, we obtain the following linear system:

�e � �
�
� �tZ� ��r [m�]	
�t [n�]	 2�r I

�
� e � �L0e�

The eigenvectors of the constant matrix L0 are: 2�, 4Z�,
2Z������2 � 4Z�2 (twice), 2Z������2 � 4Z�2 (twice),

where � � ����. Since � 
 0 and Z� 
 0, the eigenvalues of

matrix L0 are always positives. Consequently, the control law

defined in equation (57) is always locally stable for any n� and

any m�.
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