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Abstract

We propose a method that dramatically improves the per-
formance of template-based matching in terms of size of
convergence region and computation time. This is done by
selecting a subset of the template that verifies the assump-
tion (made during optimization) of linearity or quadraticity
with respect to the motion parameters. We call these subsets
linear or quadratic subsets.

While subset selection approaches have already been
proposed, they generally do not attempt to provide linear or
quadratic subsets and rely on heuristics such as textured-
ness. Because a naive search for the optimal subset would
result in a combinatorial explosion for large templates, we
propose a simple algorithm that does not aim for the op-
timal subset but provides a very good linear or quadratic
subset at low cost, even for large templates. Simulation re-
sults and experiments with real sequences show the supe-
riority of the proposed method compared to existing subset
selection approaches.

1. Introduction
Since the seminal work of Lucas and Kanade [8], many

improvements to template-based tracking have been pro-
posed, mostly focusing on improving the efficiency [6, 5,
11, 1, 7, 4, 2, 3, 9]. Template-based tracking is usually per-
formed by minimizing the sum-of-squared intensity differ-
ences, and many new optimization schemes have been in-
troduced to enable the precomputation of all of or parts of
the matrices involved. Other approaches focus on the re-
striction to some pixels of the template to ameliorate the
computational cost without decreasing the performance in
terms of convergence too much.

To improve the performance of template-based tracking
even further, we propose an approach that aims to improve

the convergence behavior of the algorithm. Surprisingly,
very few approaches considered that direction, while the
convergence region has an obvious influence on the com-
putation time. A notable exception is the recent work of
Matas et al. [9] that proposes to select the pixels that most
closely verify the approximation used by the optimization.
This greatly improves the tracking result. However, the
pixel subset is selected by a greedy search over randomly
sampled subsets and each subset is tested against the linear-
ity assumption on synthetically warped views of the tem-
plate. The computation time quickly increases with the size
of the template. Moreover, a series of linear predictors has
to be learned in order to handle different motion ranges.

We therefore introduce a subset construction algorithm
suitable for large templates, making the selection approach
more useful in practice. We call these subsets linear or
quadratic subsets, depending on the optimization method
chosen for the template-based tracking. The proposed al-
gorithm makes it possible to select subsets that enlarge the
convergence region of the optimization method used. Our
algorithm is based on a simple remark that allows to build
large subsets very efficiently: If two subsets are linear (or
quadratic) with respect to the motion parameters under any
local motion, then their union is also a linear (or quadratic)
subset. Since we only learn the subsets for a finite num-
ber of local motions our algorithm does not necessarily pro-
vide the largest linear or quadratic subset, but as shown by
our experiments, it is sufficient to considerably improve the
convergence properties of the tracking.

We tested our approach with two popular optimization
methods for template-based tracking, namely the Inverse
Compositional algorithm and the Efficient Second-order
Minimization. In both cases, it always results in a signif-
icant reduction in terms of computation time and a signifi-
cant gain in terms of the convergence region. In particular,
it doubles the convergence frequencies of the Inverse Com-
positional algorithm for large motions.
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The rest of this paper is structured as follows: Section 2
describes some work related to our approach. Section 3
quickly recalls the formulation of the tracking algorithms
considered for subset selection. Our algorithm for selecting
linear and quadratic subsets is presented in Section 4. Sec-
tion 5 and Section 6 provide results obtained on simulations
and real sequences. We conclude with Section 7.

2. Related Work
One of the first publications on template-based tracking

was the Lucas-Kanade algorithm [8], which uses optical
flow for recovering the translation of an object in the im-
age plane. Since then, many other approaches have been
proposed to improve the tracking efficiency and accommo-
date more complex movements of the tracked objects, ei-
ther by modifying the cost function or by performing differ-
ent approximations and linearizations [6, 11, 1]. Baker and
Matthews [2] proved that all of these approaches are equiv-
alent in terms of convergence. However, in terms of com-
putation time, the Inverse Compositional (IC) algorithm [1]
gives the best results by making it possible to precompute
many terms. Another way to improve the efficiency of
template-based tracking is to improve the convergence be-
havior of the algorithm. Benhimane and Malis [3] propose
the Efficient Second-order Minimization (ESM), which ex-
hibits the advantages of second-order optimization, i.e. it
converges faster and it has a larger convergence region,
without the need of the prohibitive Hessians computation.

In order to increase the speed of template-based track-
ing approaches it is also possible to consider only a subset
of the template, and several methods have been proposed
for selecting pixels without degrading the convergence be-
havior too much. The main difficulty is that the number
of possible subsets increases exponentially with the size of
the template —it is equal to 2N where N is the number of
pixels of the template— making an exhaustive search even
for small templates intractable. Therefore, mainly heuristics
have been proposed. In particular, Shi and Tomasi [10] con-
sider the pixels that can be localized precisely under affine
deformations and end up with a “texturedness measure” for
efficient extraction. In [5], Dellaert and Collins perform the
selection based on the reduction of the uncertainty of the es-
timated motion and of the redundancy of information pro-
vided by the pixels. They end up with a measure closely
related to the one of Shi and Tomasi except that a prior on
motion can also be taken into account when available. How-
ever, this is not sufficient alone, and they have to enforce a
good distribution of the pixels over the template.

It is true that pixels with high “texturedness” contain
rich information, and restricting the template to these pixels
makes the algorithm faster without loosing too much ro-
bustness. However, this does not mean that it will lead to
a better convergence. In fact, Zivkovic and van der Heij-

den [12] show in the context of interest point tracking that
extracting pixels with large convergence regions gives much
better results in practice.

More recently, a method based on the convergence prop-
erties has been proposed by Matas et al. [9]. They use the
optimization method proposed by [7], where instead of re-
lying on analytical Jacobians, a linear relation between the
image differences and the motion is estimated from motions
generated during an off-line phase. Since this relation is
not necessarily exactly linear, they look for a set of pixels
so that the linear relation is verified as closely as possible.
However, the search for a good subset is performed by a
greedy algorithm over randomly sampled subsets that is not
suitable for large templates. Moreover, they loose the ad-
vantage of analytical expressions, and have to learn a series
of linear predictors to ensure an acceptable precision.

We propose a method that avoids the combinatorial ex-
plosion and is therefore suitable for large templates, making
the selection based on linearity useful in practice.

3. Template-Based Tracking
In order to correctly present our method, we quickly re-

call the foundations of template-based tracking, the IC and
the ESM algorithms that will be used to test our approach.
The interested reader can refer to [2] for more details.

Let I∗ be an image containing the reference template of
an object we aim to track, and let I be the current image
of the observed scene. Let {p∗i } be the set of coordinates
of the projections in the reference image I∗ of a set of 3D
points lying on the object of interest. Tracking the reference
template means finding the projective space automorphism
w that minimizes:∑

i

(I (w(p∗i ))− I∗(p∗i ))
2 (1)

The 3D motion of the object of interest can be extracted
from w. For simplicity reasons, we consider here only a
planar object, and w will be based on a homography G
parametrized over a vector x. However, all the derivations
in this paper are generic and our approach can be applied
to more complex shapes. During tracking, an approxima-
tion Ĝ of the true automorphism G is available, and the
problem can be redefined as finding an incremental trans-
formation G(x) such that the composition of Ĝ and G(x)
gives the true automorphism G. Then, the problem consists
in finding the optimal parameters x̃ that minimize:

1
2
‖y(x)‖2 (2)

where y(x) is the vector made of the image differences:

yi(x) = I
(
w(ĜG(x))(p∗i )

)
− I∗(p∗i ) . (3)



This problem is usually solved using an iterative min-
imization after a Taylor series approximation of the cost
function (2). The IC algorithm of Baker and Matthews [2]
considers a first-order approximation:

y(x) = y(0) + J(0) x + O(‖x‖2) (4)

while the ESM algorithm of Benhimane and Malis [3] relies
on a second-order approximation:

y(x) = y(0) + J(0) x +
1
2
M(0,x) x + O(‖x‖3) (5)

where J(x) = ∇xy(x) is the Jacobian matrix of the
vector y(x) with respect to the motion parameters x,
M(x1,x2) = ∇x1 (J(x1)x2) is based on the Hessian ma-
trices, and O(‖x‖i) is a remainder of order i. However,
both minimize the cost function iteratively by estimating x̃:

x̃ =
(
J>x Jx

)−1
J>x y(0) (6)

The two algorithms use different expressions for Jx. In
the IC algorithm, it is a constant matrix which we denote
as Jic and which is of the form: Jic = JI∗ Jw JG where
JI∗ depends on the gradient of the reference template and
Jw and JG depend on the warping function and the ho-
mography parameterization respectively. The ESM algo-
rithm uses another expression which we denote as Jesm =
1
2 (JI + JI∗) Jw JG, where JI has to be computed at
each minimization step. However, it is shown in [3] that,
with a suitable parameterization, using this Jacobian gives
the desirable properties of second-order methods with the
same computation complexity as standard first-order ap-
proaches. What is important here for our approach is that
the two methods rely on the iteration given by (6). Our se-
lection algorithm will be the same for these two methods
except for the expression of Jx.

4. Determining Linear and Quadratic Subsets
4.1. Linear and Quadratic Subsets

A linear subset is a set of pixels on the template such
that the approximation made by the IC algorithm becomes
exact. Formally, a linear subset E = {p∗i } verifies:

∀x: yE(0) = −Jic,Ex (7)

where yE is a vector of image differences and Jic,E is the IC
Jacobian – both computed for the pixels of E . As a result,
the IC algorithm will converge toward the minimum ideally
in one iteration when a linear subset is used. In practice, be-
cause of noise and because the relation between the image
differences and the motion parameters is not exactly linear,
we will see that it can sometimes take more than one it-
eration, but it still results in a decrease in the number of
iterations and an increase in the convergence frequency.

Similarly, a quadratic subset is a subset of pixels such
that the approximation made by the ESM algorithm be-
comes exact. Hence, a quadratic subset E = {p∗i } verifies
∀x: yE(0) = −Jesm,Ex. As will be shown, a similar gain
in performance is then obtained with the ESM algorithm
when using quadratic subsets.

4.2. Stability under Union Operation

It is easy to see that the set of linear subsets and the set of
quadratic subsets are stable under the union operation. Let
us consider two linear subsets E and E ′. Since we have:

yE∪E′(0) =
(

yE(0)
yE′(0)

)
and (8)

JE∪E′(0) =
(

Jic,E(0)
Jic,E′(0)

)
, (9)

E ∪ E ′ verifies Equation (7), and is therefore a linear sub-
set. Of course, a similar remark can be made for quadratic
subsets. This property is extremely useful since it allows
to group several linear or quadratic subsets to form a larger
one, and our algorithm strongly relies on it.

4.3. Construction Algorithm

Here we present the algorithm we developed to create
large linear or quadratic subsets.

In order to built the subsets, we consider all possible 3×3
pixel regions over the original template, and determine for
each of them if they form a linear (or a quadratic) subset.
Once this is done the linear subsets are merged to form the
final subset. These 3 × 3 pixel regions have the advantage
to be of (almost) the minimal size1 that allows to determine
a motion. Moreover, when such a compact region provides
enough information to retrieve the object motion, it is very
desirable to integrate it into the final subset. We can there-
fore build a very good final subset by testing Equation (7)
on a relatively small number of small subsets.

Considering Equation (7), a naive criterion that could be
used in practice would be to search for regions that min-
imize the differences between the computed image differ-
ences and the true ones. However, such a residual is not
very meaningful for the problem at hand, and we prefer a
criterion that favors the accuracy of the recovered motions.
We first apply known random motions to the image. For
each motion, and for each 3× 3 region, we use Relation (6)
to get an estimate of the motion from the pixels in the re-
gion. Each region has a counter initialized to 0 which is
incremented each time the position of the region center is
retrieved with an error lower than one pixel. At the end of
this training phase, the regions with a counter value above

1The correct minimal size is 6 for a 3–D Euclidean motion of any 3D
object (rotation and translation in the calibrated case) and 8 for a projective
transformation of a planar object (homography in a non-calibrated case).



Figure 1. Linear and quadratic subsets learned for a sample template. The top left template shows the linear subsets used with the inverse
compositional algorithm and the top right template shows the quadratic subsets used with the ESM algorithm. The bottom row shows the
linear and quadratic subsets obtained when the subsets are constrained to be spread evenly over the template. Building such subsets takes
less than 30 seconds on a standard computer.

a certain threshold τ are merged into a final subset E that
will be used during tracking, while the other pixels are dis-
carded. Figure 1 shows examples of linear and quadratic
subsets. The threshold τ was set so that only 20% of the
template pixels are contained in the final subset E .

In order to be robust to partial occlusion that may oc-
cur during tracking, we also need to ensure a more or less
uniform distribution of the subset over the template. Other-
wise, it is possible that all the pixels concentrate in a small
region, so that under partial occlusions the tracking will fail.
We therefore subdivide the template with a virtual grid and
require that there is a similar amount of pixels in each cell.
The bottom row of Figure 1 shows the subsets built when
using a 2× 2 grid.

Our algorithm is linear w.r.t. the template size, and takes
less than 30 seconds for 150× 150 templates if we perform
100 motions on a 1.66 GHz Intel Core-Duo CPU with 1 GB
Memory. We can see that the obtained subsets do not in-
clude corners and edges due to their high non-linearities and
as expected uniform regions are not selected either since
they do not add any information. When looking closely
at the selected regions, one can actually realize that they
often correspond to image parts where the intensities vary
smoothly.

5. Simulation Results

We present simulations designed to validate our claims
regarding the improvements in terms of accuracy and ro-
bustness. We applied random motions with increasing vari-
ances to a 100× 100 template and then used different types
of pixel subsets in both the IC and ESM algorithms to re-
cover the motion parameters. We considered a test as con-
verged if the template corners were retrieved with an RMS
error lower than 1 pixel after 10 iterations, and plotted the
convergence frequency against the motion variance mea-
sured on the template corners.

The results of the simulations are shown in Figure 2.
Curves annotated with ’all pixels’ were obtained when us-
ing the full template. The other curves were obtained us-
ing only 20% of the template pixels, selected with differ-
ent methods: ’random subsets’ refer to randomly selected
pixels, ’regular subsets’ to regularly sampled pixels, ’good-
features-to-track’ to pixels returned by the algorithm of Shi
and Tomasi [10] and ’linear’ and ’quadratic’ to the subsets
returned by the algorithm we propose. Note that all sim-
ulations have been conducted under the same conditions,
and only the subsets were changed. In addition, neither
preliminary image filtering nor multi-scale pyramid imple-
mentations have been used for this evaluation, to make the
contribution of our approach clearer. For small motions all



Figure 2. Convergence frequency vs. motion variances when using different types of subsets. First row: results obtained with the IC
algorithm; Second row: results obtained with the ESM algorithm; Left column: without noise; Right column: in the presence of noise. Our
method performs two times better with the IC algorithm than the other methods for large motions in noisy conditions. With the slower but
more powerful ESM algorithm, the differences are smaller, but our approach still outperforms the other methods.

the approaches perform well and exhibit a high convergence
frequency. If the motions are getting larger, we can see that
the frequency of convergence decreases for all tested meth-
ods, however, our method always allows to achieve a high
convergence frequency. In the case of the IC algorithm, the
convergence frequency is four times the convergence fre-
quency of the other methods under ideal noise-free condi-
tions. When Gaussian noise with a standard deviation of 5
gray levels (over 255) is added, the convergence frequency
obtained with our linear subset is still twice as big as the one
of the other methods. Comparable results are obtained with
the ESM algorithm. ESM is a little bit slower but more pow-
erful than IC. Here, the differences are smaller, however, it
is still clear that our approach outperforms the other meth-
ods. With the quadratic subsets, using the ESM algorithm,
we achieve a convergence frequency of more than 60%.
Apart from the accuracy and the robustness our approach
also improves the speed of the tracking, since we only use
a small number of pixels. If used for real-time tracking this
directly results in a smaller interframe displacement, mak-
ing the tracking easier.

6. Experimental Results
We performed numerous real-world experiments to test

the performance of the proposed approach. Standard limita-

tions to template-based tracking such as noise, partial occlu-
sions, illumination changes, scale changes, oblique viewing
angles, and fast motion were taken into consideration dur-
ing this validation. These experiments confirm the fact that
the subsets obtained with our algorithm can be used to ro-
bustly and accurately deal with real-world images.

In particular, Figure 3 shows some excerpts from one
sample sequence2 where the tracking output was used to
perform an Augmented Reality task. Our algorithm was ap-
plied to a 155×168 pixels template of a book cover in order
to extract a quadratic subset to be tracked by the ESM al-
gorithm. The quadratic subset represents 32% of the size of
the reference template. A maximum of 15 iterations were
used during the optimization. The book was tracked cor-
rectly over the sequence, despite partial occlusions, changes
in scale and oblique viewing angles. As can be assessed by
watching the video, the augmentation is visually very sta-
ble, and only when significant parts of the template are cov-
ered there is a slight jittering, meaning that the pose was
estimated very accurately.

The frame rate is between 30 fps and 60 fps on a 1.66
GHz Intel Core-Duo CPU with 1 GB Memory. The exact
value of the frame rate depends on many factors including
the size of the reference template, the number of scale levels

2See: http://campar.in.tum.de/files/publications/benhimane2007cvpr.video.avi



(a) (b) (c)

(d) (e) (f)

Figure 3. Tracking a quadratic subset for Augmented Reality. The book is tracked correctly despite partial occlusions, changes in scale and
oblique viewing angles. The teapot is visually very stable, showing that the pose is estimated very accurately.

(if a multi-scale pyramid implementation is used) and the
desired accuracy.

7. Conclusion
We proposed a simple algorithm based on a low-cost

off-line learning step to determine which pixels can form a
strong subset that verifies the linearization made during op-
timization. We validated our algorithm on synthetic and real
data and showed that it outperforms other subset selection
approaches for template-based tracking in terms of conver-
gence frequency and in terms of efficiency. We also showed
that it can be easily integrated into existing template-based
tracking algorithms to improve their performance, making
it very useful to people working with this approach.
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