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Abstract— The objective of this paper is to propose a new
homography-based approach to image-based visual servoing.
The visual servoing method does not need any measure of the
3D structure of the observed target. Only visual information
measured from the reference and the current image are needed
to compute the task function (isomorphic to the camera pose) and
the control law to be applied to the robot. The control law is
designed in order to make the task function converge to zero. We
provide the theoretical proof of the existence of the isomorphism
between the task function and the camera pose and the theoretical
proof of the local stability of the control law. The experimental
results, obtained with a 6 d.o.f. robot, show the advantages of
the proposed method with respect to the existing approaches.

I. INTRODUCTION

Visual servoing is a robotic task that consists in controlling a
robot thanks to visual information acquired by one or multiple
cameras [11], [12]. This robotic task can be considered as
the regulation of a task function e(q, t) that depends on the
robot configuration q and the time t [20]. In this paper, we
consider eye-in-hand visual servoing approaches that use as
less as possible 3D information on the observed target. In the
literature, the visual servoing methods are generally classified
as follows:

- 3D visual servoing: the task function e(q, t) is expressed
in the Cartesian space, i.e. the visual information acquired
from the two images (the reference and the current images)
are used to reconstruct explicitly the pose (the translation
and the rotation in the Cartesian space) of the camera (see
for example [23], [18], [1], [22], [14]). The advantage of an
explicit estimation of the error in the Cartesian space is the
decoupling of the task function, i.e. the camera rotation and
the camera translation can be controlled independently one
from the other. The camera translation (up to a scale factor)
and the camera rotation can be estimated through the Essential
matrix [13], [10], [9]. However, the Essential matrix can not
be estimated when the target is planar or when the motion
done by the camera between the reference and the current pose
is a pure rotation. For these reasons, it is better to estimate
the camera translation (up to a scale factor) and the camera
rotation using a homography matrix [16].

- 2D visual servoing: the task function e(q, t) is expressed
directly in the image, i.e. these visual servoing methods do not
need the explicit estimation of the pose error in the Cartesian
space (see for example [8], [4]). A task function isomorphic
to the camera pose is built. As far as we know, except for
some special “ad hoc” target [6], the isomorphism is generally
supposed true without any formal proof. The real existence of

the isomorphism avoids situations where the task function is
null and the camera is not well positioned [3]. In general,
the task function is built using simple image features such as
interest points coordinates. Since the control is done in the
image, the target has much more chance to remain visible in
the image. However, the robot trajectory is not optimal because
the task function is not decoupled. Many methods have been
proposed in order to obtain a task function as decoupled as
possible [5], [21].

- 2D 1/2 visual servoing: the task function e(q, t) is
expressed in the Cartesian space and in the image, i.e. the
rotation error is estimated explicitly and the translation error
is expressed in the image (see for example [15], [7]). These
visual servoing approaches make it possible not only to
decouple the rotation and the translation control but also to
perform the control in the image. With this approach, it is
possible to demonstrate the stability and the robustness of the
control law [14].

We notice that, for any of the previous methods, we need a
measure (on-line or off-line) of some 3D information con-
cerning the observed target. In the 2D 1/2 visual servoing
and 3D visual servoing, the pose reconstruction using the
homography estimation is not unique (2 different solutions are
possible). In order to choose the right solution, it is necessary
to have the normal vector to the target plane. In the 2D visual
servoing, when considering for example points as features, the
corresponding depths are necessary to have a stable control law
[17]. The 3D information can be obtained on-line. However,
the price to pay is a time consuming estimation step. For
example, when the target is planar, many images are needed
to obtain a precise estimation of the normal to the plane.

Our objective is to design a visual servoing method that
does not need any measure of the 3D structure of the target
and that only needs the reference image and the current image
to compute the task function e(q, t). In this paper, we present
a new 2D visual servoing method that makes it possible to
control the robot by building a task function isomorphic to
the camera pose in the Cartesian space. We have demonstrated
that it exists an isomorphism between a task function e
(measured using the homography that matches the reference
target plane image and the current one) and the camera pose
in the Cartesian space (i.e. the task function e is null if and
only if the camera is back to the reference pose). Contrarily
to the standard 2D visual servoing, we have demonstrated that
we do not need to measure any 3D information in order to
guarantee the control stability. The computation of the control



law is quite simple (we do not need neither the estimation of
an interaction matrix nor the decomposition of a homography)
and, similarly to the task function, it does not need any
measure of 3D information on the observed target.

For simplicity, in order to introduce our approach, we con-
sider in this paper planar targets with unknown 3D information
(i.e. the normal vector to the target plane is unknown). The
generalization of the new approach to non-planar targets is
straightforward since a homography can also be measured if
the target is non-planar [16].

II. THEORETICAL BACKGROUND

As already mentioned in the introduction, we consider visual
servoing methods that aim to control a robot thanks to the
images acquired by an on-board camera. In other words, the
robot is controlled in order to position the current camera
frame F to the reference camera frame F∗. We suppose that
the only available information are an image I∗ of the scene
at the reference pose and a current image I of the observed
scene (acquired in real-time).

A. Modeling and notations

Let P be a point in the 3D space. Its 3D coordinates are
X ∗ = [X∗ Y ∗ Z∗] in the reference frame F∗. Using a
perspective projection model, the point projects on a virtual
plane perpendicular to the optical axis and distant one-meter
from the projection center in the point m∗ = [x∗ y∗ 1]
verifying:

m∗ =
1

Z∗X ∗ (1)

We call I∗
m the reference image in normalized coordinates. A

pinhole camera performs a perspective projection of the point
P on the image plane I∗ [9]. The images coordinates p∗ =
[u∗ v∗ 1] can be obtained from the normalized coordinates
with an affine transformation:

p∗ = Km∗ (2)

where the camera intrinsic parameters matrix K can be written
as follows:

K =


 f fs u0

0 fr v0

0 0 1


 (3)

where f is the focal length in pixels, s represents the default
of orthogonality between the image frame axis, r is the aspect
ratio and [u0 v0] are the coordinates of the principal point (in
pixels).

Let R ∈ SO(3) and t ∈ R
3 be respectively the rotation

and the translation between the two frames F and F∗. In the
current frame F , the point P has the following coordinates
X = [X Y Z] and we have:

X = RX ∗ + t (4)

Let u = [ux uy uz] be the unit vector corresponding to the
rotation axis and θ (θ ∈]−π, π[) be the rotation angle. Setting
r = θu, we have:

R = exp([r]×) (5)

where exp is the matrix exponential function and where the
skew matrix [r]× is defined as follows:

[r]× =


 0 −rz +ry

+rz 0 −rx

−ry +rx 0


 (6)

The point X projects on the current normalized image Im in
m = [x y 1] where:

m =
1
Z

X (7)

and projects on the current image I in p = [u v 1] where:

p = Km (8)

B. Projective transformation between two images of a plane

Let us suppose that the point P belongs to a plane π. Let
n∗ be the normal vector to π expressed in the reference frame
F∗ and d∗ is the distance (at the reference pose) between the
plane π and the center of projection. If we choose n∗ such
that ‖n∗‖ =

√
n∗�n∗ = 1/d∗ then, we can write:

n∗�X ∗ = 1 (9)

By using equations (1), (4), (7) and (9), we obtain a the
following relationship between m and m∗:

Z

Z∗m = Hm∗ (10)

where the homography matrix H can be written as follows:

H = R + tn∗� (11)

Note that det(H) > 0, otherwise the camera has moved
through the 3D plane and the target is not visible in the image
any more.
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Fig. 1. Projection model and homography between two images of a plane

By using equations (2), (8) and (10), we obtain the following
relationship between p and p∗:

Z

Z∗p = Gp∗ (12)

where the matrix G can be written as follows:

G = KHK−1 (13)



Given two images I and I∗ of a planar target, it is possible
to compute the homography matrix. In fact, four non collinear
matched points {p∗

i , pi}, i ∈ {1, 2, 3, 4} suffice to
compute G up to a scale factor. Then, using an approximation
of the matrix K, we compute the matrix H up to a scale
factor. Decomposing the matrix H to obtain the rotation R
and the translation t has more than one solution [9]. In
general, given the matrix K, four solutions {Ri, ti, n∗

i },
i ∈ {1, 2, 3, 4} are possible but only two are physically
admissible. An approximation of the real normal vector n∗ to
the target plane makes it possible to choose the right pose.

III. HOMOGRAPHY-BASED 2D VISUAL SERVOING

In this paper, we present a new visual servoing method that
does not need any measure of the structure of the observed
target. In order to do that, we have to define an isomorphism
between the camera pose and the visual information extracted
from the reference image and the current image only. Given
this isomorphism, we compute a stable control law which also
rely on visual information only.

A. Isomorphism between task function and camera pose

The two frames F and F∗ coincide, if and only if,
the matrix H is equal to the identity matrix I. Using the
homography matrix H, we build a task function e ∈ R

6

locally isomorphic to the camera pose (since we have
restricted θ �= ±π). The task function e is null, if and only if
the camera is back to the reference pose.

Theorem 1: Task function isomorphism.
Let R be the rotation matrix and t be the translation vector

between F∗ et F , where R = exp
(
θ [u]×

)
, θ ∈] − π, π[ and

let X ∗ = [X∗ Y ∗ Z∗] be the coordinates of a certain point
P ∈ π in the reference frame F∗. We define the task function
e as follows:

e =
[

eν

eω

]
=

[
(t + (R − I)X ∗)/Z∗

2 sin(θ)u + [n∗]× t

]
(14)

where n∗ is the normal vector to the plane π expressed in
the reference frame F∗. The function e is isomorphic to the
camera pose, i.e. e = 0, if and only if, θ = 0 et t = 0.

The proof of the theorem is given in the Appendix. We can
demonstrate also that the task function e can be computed
using the two images I and I∗ only, i.e. without directly
measuring the 3D structure of the target (n∗ et Z∗). Given
the homography matrix H, we can write:

eν = (H − I)m∗ (15)

[eω]× = H − H� (16)

See the Appendix for the proof of these equations. If we
have eν = 0, then the two projections X ∗ and X of the
same 3D point P coincide. And if we have eω = 0, then the
homography matrix H is symmetric.

In this paper, for simplicity reasons, we will consider only
this isomorphism. However, it exists a group of isomorphisms

that can be build using the homography matrix H. For
example, we can choose the task function e as follows:

eν =
m�Hm∗

m�m
m − m∗

[eω]× = H − H�

where m = 1
n

∑n
i=1 mi and m∗ = 1

n

∑n
k=1 m∗

i , and where
∀i ∈ [1, n], we have that m∗

i and mi are corresponding points.
We demonstrate also that this function is isomorphic to the
camera pose.

B. The control law

The derivative of the task function with respect to time ė
can be written as follows:

ė = L
[

ν
ω

]
(17)

where ν is the camera translation velocity, ω is the camera
rotation velocity and L is the (6 × 6) interaction matrix. The
matrix L can be written as follows:

L =
[

1/Z∗ − [eν + m∗]×
[n∗]× − [n∗]× [t]× + 2Lω

]
(18)

where the (3 × 3) matrix Lω can be written as follows:

Lω = I − sin(θ)
2

[u]× − sin2

(
θ

2

)
(2I + [u]2×) (19)

Theorem 2: Local stability.
The control law:[

ν
ω

]
= −

[
λνI 0
0 λωI

] [
eν

eω

]
(20)

where λν > 0 and λω > 0 is locally stable.

See the Appendix for the proof. This control law only de-
pends on the task function. Consequently, it can be computed
using the two images I and I∗. The interaction matrix L does
not need to be estimated. It is only useful to analytically prove
the stability of the control law. With such control law, the task
function e converges exponentially to 0. The local stability of
the control law is guaranteed for all n∗ and for all X ∗. By
choosing λν > 0 and λω > 0 such that λν �= λω, one can
make eν and eω converge at different speeds.

IV. EXPERIMENTAL RESULTS

We have tested the proposed visual servoing on the 6
d.o.f. robot of the LAGADIC research team at IRISA/INRIA
Rennes. The robot is accurately calibrated and it provides a
ground truth for measuring the accuracy of the positioning
task. A calibrated camera is mounted on the end-effector of the
robot. A reference image is captured at the reference pose. The
positioning task is done with respect to a planar target. Starting
from another pose (the initial pose) that makes it possible to
see the object from a different angle, the robot is controlled
using the control law (20) with λν = λω = 0.1 in order to
get back to reference pose. At the initial pose (the translation
displacement is 0.68 meters and the rotation displacement
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Fig. 2. Experiment 1: Camera positioning with respect to a planar object
without approximating the normal vector to the object plane.

is 96 degrees), we can see the projective transformation of
the area of interest (see the red rectangle in the figures 2(b)
and 2(a)). We use the ESM1 visual tracking algorithm [2] to
track the zone of interest and to estimate at the same time
the homography matrix H . Given the matrix H, the control
law is computed. We use as control point (m∗ in the equation
(15)) the center of gravity of the zone. At the convergence, the
robot is back to its reference pose and the visual information
coincide with the visual information of the reference pose
(see figure 2(b)). The control law is stable: the translation
figures 2(c) and the rotation 2(d) velocities converge to zero.
As shown in figures 2(e) and 2(f), the camera displacement
converge to zero very accurately (less than 1 mm error for
the translation and less that 0.1 degrees for the rotation). A
second experiment is performed under similar conditions (the
same initial camera displacement, an unknown normal vector
to the plane, an unknown camera/object distance...). Contrarily
to the previous experiment, the positioning task is done with
respect to a different target (see figure 3(a)). We also use
a very bad estimation of the camera parameters: f̂ = 800,

1the ESM visual tracking software can be downloaded from the following
web-page: http://www-sop.inria.fr/icare/personnel/malis/software/ESM.html
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Fig. 3. Experiment 2: Camera positioning with an uncalibrated camera
without approximating the normal vector to the object plane.

r̂ = 0.5, û0 = 100, v̂0 = 200 (the calibrated parameters were
f = 592, r = 0.96, u0 = 198, v0 = 140). Figures 3(c) and
3(d) show that the control law is robust to camera calibration
errors: the translation and the rotation velocities converge to
zero. At the convergence, the visual information coincide with
the visual information of the reference image (see figure 3(b)).
Again, figures 3(e) and 3(f) show that the camera displacement
converges to zero.

V. CONCLUSIONS

In this paper, we have presented for the first time a
homography-based 2D approach to visual servoing that do
not need any measure of the 3D structure of the observed
target. We have presented a simple and stable control law.
We think that this approach can open new research directions
in the field of vision-based robot control. Indeed, as far as
we know, none of the existent methods make it possible to
position a robot with respect to an object without measuring,
on-line or off-line, some information on its 3D structure.
Many improvements of the proposed method can be studied.
For example, a great robustness to errors on the camera
intrinsic parameters has been observed in the experiments.
However, this robustness has not been analytically proved



yet. In addition, the experiments have shown that the stability
region is very big, but the true stability region is unknown at
the moment. Similarly to [19], we can use trajectory planning
in order to have a bigger stability region and to take into
account visibility constraints.

APPENDIX

A. The task function is a function of image measures only

Using the equation (14), the vector eν can be written as
follows:

eν = (t + (R − I)X ∗)/Z∗ = (RX ∗ + t − X ∗)/Z∗

Using the equation (4), eν becomes:

eν = (X − X ∗)/Z∗

Plugging equations (1) and (7) gives:

eν =
Z

Z∗m − m∗

Thanks to (10), eν can be written using H and m∗ only:

eν = Hm∗ − m∗ = (H − I)m∗

Thanks to equation (11), we have:

H − H� = R + tn∗� − R� − n∗t�

Using the Rodriguez formula for the rotation matrix R:

R = I + sin(θ) [u]× + 2 cos2
(

θ

2

)
[u]2×

we can write:

R − R� = 2 sin(θ) [u]×

Given the following property:

tn∗� − n∗t� =
[
[n∗]× t

]
×

The antisymmetric part of the matrix H can be written as:

H − H� =
[
2 sin(θ)u + [n∗]× t

]
×

Consequently, given equation (14), we have:

H − H� = [eω]×

B. The task function is isomorphic to the camera pose

In order to simplify the proof of Theorem (1), we proof
three simpler propositions.

Proposition 1:
The matrix HH� has one eigenvalue equal to 1. The

eigenvector corresponding to the eigenvalue is v = [Rn∗]× t.

Proof of proposition 1:
Using equation (11), we have:

HH� = (R + tn∗�)(R� + n∗t�)

Since we have R ∈ SO(3) then RR� = I. Thus, we have:

HH� = I + t(Rn∗)� + (Rn∗ + ‖n∗‖2t)t�

The matrix HH� is the sum of I and a rank 2 matrix. Thus,
one eigenvalue of HH� is equal to 1. Setting v = [Rn∗]× t,
we have:

(Rn∗)�v = 0 and t�v = 0

showing that v is an eigenvector of HH�:

HH�v = v
Proposition 2:

If H = H� and sin(θ) �= 0, then n∗� u = 0, t� u = 0 and
n∗� v = 0 (where v = [Rn∗]× t).

Proof of proposition 2:
If we have H = H�, then we have:

2 sin(θ)u + [n∗]× t = 0 (21)

By multiplying each side of the equation (21) by n∗�, we
obtain:

2 sin(θ)n∗�u = 0

Since we have supposed that sin(θ) �= 0, we have:

n∗�u = 0

Similarly, by multiplying each side of the equation (21) by
t�, we obtain:

t�u = 0

Finally, using the Rodriguez formula for the rotation matrix,
we have:

Rn∗ =
(
I + sin(θ) [u]× + 2 cos2

(
θ

2

)
[u]2×

)
n∗

= n∗ + sin(θ) [u]× n∗ + 2 cos2
(

θ

2

)
[u]2× n∗

= n∗ + sin(θ) [u]× n∗ + 2 cos2
(

θ

2

) (
uu� − I

)
n∗

If we have n∗�u = 0, then we have:

Rn∗ = n∗ + sin(θ) [u]× n∗ − 2 cos2
(

θ

2

)
n∗ (22)

The antisymmetric matrix associated to the vector Rn∗ is:

[Rn∗]× = [n∗]× + sin(θ)
[
[u]× n∗]

× − 2 cos2
(

θ

2

)
[n∗]×

and since
[
[u]× n∗]

× = n∗u� − un∗�, we can write:

[Rn∗]× = [n∗]×+sin(θ)
(
n∗u� − un∗�)−2 cos2

(
θ

2

)
[n∗]×

By multiplying both sides of the equation by n∗�, we obtain:

n∗� [Rn∗]× = ‖n∗‖2 sin(θ)u� (23)

By multiplying both sides of the equation by t, we obtain:

n∗� [Rn∗]× t = ‖n∗‖2 sin(θ)u�t

Since u�t = 0, then we prove that:

n∗�v = 0



Proposition 3:
If H = H�, v = [Rn∗]× t = 0 and sin(θ) �= 0 then

det(H) = −1.

Proof of proposition 3:
If v = [Rn∗]× t = 0 then it exists α > 0 such that:

t = αRn∗

From equation (23), we obtain:

[n∗]× Rn∗ =
(
n∗� [Rn∗]×

)�
= ‖n∗‖2 sin(θ)u (24)

Then, from equation (21) and equation (24), we obtain:

2 sin(θ)u = − [n∗]× t = −α [n∗]× Rn∗ = −α‖n∗‖2 sin(θ)u

By multiplying both sides of this equation by u�, we obtain:

2 sin(θ) = −α sin(θ)‖n∗‖2

Since we supposed sin(θ) �= 0, then we can write:

α = − 2
‖n∗‖2

and finally the determinant of the matrix H verifies:

det(H) = 1 + n∗�R�t = 1 + α‖n∗‖2 = −1

Having a matrix H with negative determinant means that
current frame F is on the opposite side of the target plane.
This is impossible since it means that we cannot see the target
in the image any more. This is the reason why det(H) > 0.

Proof of theorem 1:

It is evident that if θ = 0 and t = 0 then e = 0. We
must prove now that if e = 0, then θ = 0 and t = 0. Let us
suppose that e = 0. It is evident that if θ = 0 then t = 0
and if t = 0 then θ = 0. Now, let us suppose that e = 0 and
t �= 0 and θ �= 0. If eν = 0 then Hm∗ = m∗. Thus, H has an
eigenvalue equal to 1 and the vector m∗ is the corresponding
eigenvector. The vector m∗ is also eigenvector corresponding
to the eigenvalue 1 of the matrix H2. Since eω = 0 then
H = H� and H2 = HH�. Given Proposition 1, m∗ is then
collinear to the vector v = [Rn∗]× t. Since det(H) > 0, this
vector is different from zeros (see Proposition 3). On the other
hand, Proposition 2 shows that in this case n∗�m∗ = Z∗ = 0.
This is impossible since by definition Z∗ > 0. Thus, it is
impossible that e = 0 and t �= 0, θ �= 0.

C. Proof of the local stability of the control law

Proof of theorem 2:

After linearizing equation (17) about e = 0, we obtain
the following linear system:

ė = −
[

λt/Z
∗ −λr [m∗]×

λt [n∗]× 2λrI

]
e = −L0e

The eigenvectors of the constant matrix L0 are: 2λ, 4Z∗,
2Z∗ + λ +

√
λ2 + 4Z∗2 (twice), 2Z∗ + λ −

√
λ2 + 4Z∗2

(twice). where λ = λν/λω . Since λ > 0 and Z∗ > 0, the
eigenvalues of matrix L0 are always positives. Consequently,
the control law defined in equation (20) is always locally stable
for any n∗ and any m∗.
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