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Abstract. In this work, we address the problem of human pose esti-
mation in still images by proposing a holistic model for learning the ap-
pearance of the human body from image patches. These patches, which
are randomly chosen, are used for extracting features and training a re-
gression forest. During training, a mapping between image features and
human poses, defined by joint offsets, is learned; while during prediction,
the body joints are estimated with an efficient mode-seeking algorithm.
In comparison to other holistic approaches, we can recover body poses
from occlusion or noisy data. We demonstrate the power of our method
in two publicly available datasets and propose a third one. Finally, we
achieve state-of-the-art results in comparison to other approaches.

1 Introduction

Human pose estimation from single images is a fundamental problem in Com-
puter Vision [1]. It has a wide range of potential applications such as surveil-
lance, health care and human computer interaction. Real life applications involve
a huge amount of human appearance variations. Furthermore, out of studio en-
vironments usually include dynamic background and clutter. To address these
challenges, most of the recent work relies on modelling the human body from an
ensemble of parts [2, 3].

There are two main categories of approaches in human pose estimation: holis-
tic and part-based. In both categories, the human pose is defined in terms of a
body skeleton which is composed of a number of connected joints. On one hand,
the part-based approaches synthesise the body skeleton from a set of parts. The
most acknowledged model of this category is pictorial structures [4–6]. Currently,
most of the state-of-the-art approaches for human pose estimation rely on picto-
rial structures [7, 8, 2, 3]. Those approaches have delivered promising results on
standard evaluation datasets, but they build on complex appearance and body
prior models.

On the other hand, the holistic approaches predict directly the body skele-
ton by learning a mapping between image features and skeletons [9–12]. These
approaches usually face problems with occlusion or noise because they require
complete data. They also generalize up to the level at which unknown poses
start to appear. However, Random Forests [13] have been proven to generalize
well with unknown poses [14, 15].
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In this work, we address the problem of human pose estimation in still images,
by building on the holistic idea. We propose to learn the appearance of the human
body from image patches. These patches, which are randomly chosen from a
bounding box around the person, are used for extracting HOG features and
training a regression forest [13]. During training, we learn a mapping between
image features and human poses, defined by joint offsets. During prediction, we
can recover the human pose even under occlusion or from noisy data (Figure 1).
Moreover, we propose an efficient algorithm for estimating the mode of the joint
density function from the aggregated leaf samples.

In the experimental section, we demonstrate that a holistic approach is not
limited to complete data for performing accurate human pose estimation. To
show this, we evaluate our model on two publicly available datasets which include
self-occlusion, large appearance and pose variations. In addition, we propose a
new challenging dataset which is different from the existing datasets because
of its low resolution and noisy data. We have compared our method with the
state-of-the-art approaches and achieved better or similar results.

(a) (b) (c) (d)

Fig. 1: Human Poses: Qualitative results of our algorithm on different datasets. We
can recover human poses with large appearance and motion variations. Furthermore,
our method handles (b)-(c) self-occlusion or (d) noisy input data.

2 Related Work

There is a tremendous amount of approaches that tackle the problem of human
pose estimation from still images [1]. We follow the categorization of the methods
into holistic and part-based and review only the most related work.

Part-based approach. Starting from the part-based methods, pictorial structures
models have become the current state-of-the-art in human pose estimation in
the last decade. They have been introduced in the 70s [6], but got a lot of
attention much later [4, 5]. In the pictorial structures models, the human body
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is decomposed into a set of body parts, prior on the human pose. The goal
is to infer the most plausible body configuration given the image likelihoods,
usually estimated by body part detectors, and a prior. One idea for improving
the model is by using better appearance models [16–18]. This has also been
done by using Random Forests for body part classification [19] or regression
[20]. Shape-based body parts generally achieved better performance [21]. The
other direction of improvement is to introduce richer priors using a mixture
of models [8, 3] or fully connected graphical models [22]. Recently, the idea of
modelling the body part templates jointly has been also explored [20, 23]. In
[20], two layers of Random Forests capture the information between different
body parts, while in [23] the parts are sharing similar shape. Both directions of
improving pictorial structures have resulted in strong local appearance and prior
models. However, part-based models, such as pictorial structures, fail to capture
the whole anatomy of the human body. Morever, they have evolved by building
on computationally expensive and complex models.

Holistic approach. Unlike part-based methods, the holistic approaches rely on
learning and predicting the joint positions of the human skeleton at once. They
usually rely on learning a mapping between image features and human poses.
Mapping exemplars to human poses, in particular, became the standard way on
holistic pose estimation [24, 10, 25]. The disadvantage of the exemplar-based ap-
proaches is the necessity for accurate matching of the whole body. To solve this
problem, classification [9], regression [12] and segmentation-based [26] methods
have been proposed. However, these methods can be sensitive to noisy input and
cannot generalise to unknown poses. In order to cope with these problems, holis-
tic approaches have relied on Random Forests [14, 11, 15]. In the depth domain,
Random Forests have been used for classification [15] and regression [14]. In both
cases, a holistic model has been proposed for classifying the body joints [15] or
predicting their position [14] in the 3D space. In the image domain, Random
Forests have been introduced for human body pose classification [11].

Finally, the combination of holistic and part-based methods has been ex-
plored by introducing the concept of Poselets [27] in the pictorial structures
framework [2, 28]. These approaches have proposed an intermediate representa-
tion but they still do not capture the whole anatomy of the human body.

In our work, we adapt the idea of regression forests to the image domain and
learn to map image features to 2D human poses. To the best of our knowledge,
we are the first ones who apply a regression forest to image data for estimating
the body joints at once. The big advantage of our method in comparison to other
holistic approaches is our ability to cope with incomplete data.

3 Method

Random Forests have become very popular for human pose estimation from
depth data [29, 14, 15]. In this work, we build on a regression forest for extracting
the human pose from image data. Below, we explain the basic principles of a
regression forest and the way we apply it to our problem.
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3.1 Regression forest

A regression forest is an ensemble of regression trees T that estimates continuous
output. The goal of training a regression forest is to learn a mapping between
image patches and the parameter space. In our paradigm, the parameter space
R2×N consists of a set of N joints in the 2D space. The body skeleton is defined
by the joints and the image patches are estimated using HOG features [30].

In the training phase, a pool of randomly extracted image patches P with
associated skeleton joint offsets serves as input to each tree. The patches are ex-
tracted from random positions within a bounding box that localises the human.
Then, a tree is built from a set of nodes which include binary split functions.
Each node encloses a split function θ which is defined on the values of the HOG
features of the patch. The HOG feature vector of the image patch is extracted
as in [31]. The binary split function determines if a p sample image patch will go
to the left Pl or right Pr subset of samples. In particular, the split function is a
threshold on one dimension of the HOG feature vector. Among the dimensions
of the HOG feature vector, the threshold that gained the best split defines the
split function:

θ∗ = argmax
θ

g(θ) (1)

where g(θ) corresponds to the information gain. The information gain measures
how well the split function divides the training data into two subsets Pl and Pr.
Thus, the criterion for choosing the split function is to maximize the information
gain g(θ) by optimally splitting the input training image patches of the current
node. The information gain can be formulated as:

g(θ) = H(P )−
∑

i∈{l,r}

|Pi(θ)|
|P |

H(Pi(θ)) (2)

where H(P ) is the entropy. For estimating the entropy, the sum-of-squares-
differences is used:

H(P ) =
∑
p∈P

∑
j

∥∥vp,j − µj
∥∥2
2

(3)

where the vector vp,j includes the offsets for each joint j from the image patch
centre and µj denotes the mean for each joint offset. In order to estimate the
mean µj , we introduce a threshold ρ to consider only joints that are close to
the sampled patch, similar to [14]. Finally, the tree grows until it reaches the
maximum depth, the minimum number of samples per leaf or the information
gain for the node drops below a threshold. The same process is a repeated for
all the trees of the forest. Finally, we store the offsets of all body joints in the
leaves.

3.2 Forest Parameters

In order to correctly train the regression forest, there is a number of parameters
that has to be determined for the training data.
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Image Patches: The size of all image patches is predefined during training and
prediction. Thus, all the HOG feature vectors have the same size. We discretize
the image gradients into 9 bins and follow the implementation from [31].

Scale Invariance: The training persons in different training images are appar-
ently of different sizes, but they are all localized by a bounding box. We scale
all the data with respect to the height of the bounding box which usually corre-
sponds to the height of the person. This allows us to capture pose variations of
different humans using a common scale. Since we assume a localized person, we
scale at the prediction phase as well.

Threshold ρ: We argue that a split function has a more local than a global role.
For that reason, samples having large offsets are penalized by a threshold. We
set it experimentally to 0.8 of the human bounding box height and exclude the
joints that are outside this radius.

3.3 Prediction

In the prediction phase, the human is localised with a bounding box which is
also rescaled. Similar to training, random pixel positions are used as input to our
algorithm. An image patch is extracted for each random position and the HOG
feature vector is then estimated. In each tree, the split functions direct, left or
right, the input image patch until it reaches the leaf in which we have stored the
vectors that predict the joint positions. Thus, the next step is to aggregate the
votes of the leaves of the different trees of the forest.

For a certain joint, finding the most probable location of the joint corresponds
to estimating the mode of the density function. The most common algorithm for
estimating the mode is Mean Shift [32]. However, Mean Shift is a computationally
expensive algorithm and requires a significant amount of time to converge, given
a plethora of samples at the leaves. To overcome this limitation, we propose the
dense-window algorithm which is a greedy approach for estimating the mode of
a density function from samples. The dense-window algorithm relies on a sliding
window search in which convergence is deterministic. It only depends on the step
of the sliding window and scales linearly with the number of the samples.

To enable fast estimation, the dense-window algorithm discretizes all the 2D
predictions for every joint on a grid such that every grid cell stores the number
of predictions that lie within this cell. The runtime is linear to the number of
joint predictions s. Then, an integral matrix is generated for each cell in order
to accumulate its votes. All the cells together form an integral image. Now, the
window containing the maximum number of points can be found by sliding the
window over the integral image. This can be done in O(m2) time where m is
the resolution of the grid. We set experimentally the sliding window to 0.1 of
the person’s bounding box height and the grid resolution to 100x100 pixels. The
complexity of this algorithm is O(s+m2) which is much faster than O(Ts2) of
Mean Shift, where T is the number of iterations.



6 Vasileios Belagiannis et al.

4 Experiments

The current state-of-the-art on human pose estimation, from still images, relies
on part-based models [16, 2, 3]. Through our experimental evaluation, we stress
that holistic human pose estimation leads to high performance as well. In this
section, we analyse our model, evaluate on three datasets and compare it with
the state-of-the-art approaches.

First, we present the results for estimating the parameters of the regression
forest. We perform all the experiments only on the training images of the Image
Parse [3] dataset to avoid parameter over-fitting. Then, we compare our method
with an approach which relies on body part classification forests on the KTH
Football dataset [19]. In order to show the power of our model in comparison to
part-based methods, we evaluate on the Image Parse dataset. Finally, we propose
the new and very challenging Volleyball dataset which has very noisy and low
resolution data. We evaluate our approach on it and compare with a part-based
method [3]. For all the experiments, we use the PCP evaluation score [17].

4.1 System parameters

We first choose the parameters of the regression forest by evaluating on the Image
Parse dataset [3]. We mainly focus on determining the number and depth of the
trees, as well as the size of the window of the image patch. Figure 2 presents the
results.

(a) Number of trees (b) Depth of trees (c) Image patch size

Fig. 2: Forest parameters: We have estimated the parameters of the regression forest
on the training dataset of the Image Parse dataset [3]. The number and the depth of
trees are explored, as well as the size of the image patch.

Based on the results of the Figure 2, we have chosen to use 15 trees with
a depth of 40. The trees are very deep due to the high variation in terms of
appearance and motion of the human poses. The patch size is set to 30 pixels
per dimension.

Finally, we have evatluated the prediction step with the Mean Shift and
dense-window algorithm and we ended up with almost identical results. In par-
ticular with the the dense-window algorithm, we achieved PCP 67.1 while with
the Mean Shift algorithm PCP 67.0.
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4.2 Football dataset

In this experiment, we compare our method with the part-based method which
relies on classification forests [19]. In this work the forest classifies each pixel in
the image as a specific body joint. Afterwards, a body prior model (i.e. pictorial
structures) helps to improve the final result. The results are summarized in Table
1. For the method of Yang and Ramanan [3], we have compiled and test their
code that is available online.

Head Torso Upper Arms Lower Arms Upper Legs Lower Legs Avg.
Our method 0.86 0.98 0.88 0.57 0.92 0.80 0.84
Yang&Ramanan [3] 0.84 0.98 0.86 0.55 0.89 0.73 0.80
Kazemi et al. [19] 0.94 0.96 0.90 0.69 0.94 0.84 0.87
Kazemi et al. [19] + Prior 0.96 0.98 0.93 0.71 0.97 0.88 0.89

Table 1: KTH Football: PCP evaluation results for different body parts.

For most of the body parts, we achieve similar results with the classification
forest of [19]. In our formulation, we do not rely on a body prior model for
smoothing the results. In Figure 3 some of our results on the KTH football
dataset are presented.

4.3 Image Parse dataset

The Image Parse dataset [3] is one of the most standard datasets for human pose
estimation from images. It includes images of humans with different appearance
and pose (Figure 4). In Table 2, we present our results and compare with several
part-based approaches.

Torso Upper Legs Lower Legs Upper Arms Lower Arms Head Avg.
Our method 88.8 80.9 72.8 58.2 27.5 74.1 67.1
Andriluka et al.[4] 86.3 66.3 60.0 54.6 35.6 72.7 59.2
Yang&Ramanan [3] 82.9 69.0 63.9 55.1 35.4 77.6 60.7
Pischulin et al. [2] 92.2 74.6 63.7 54.9 39.8 70.7 62.9
Pischulin et al. [33] + [2] 90.7 80.0 70.0 59.3 37.1 77.6 66.1
Johnson&Everingham [8] 87.6 74.7 67.1 67.3 45.8 76.8 67.4

Table 2: Image Parse: PCP evaluation results for different body parts.

Our method achieves similar results to the other approaches with the great
difference that we use smaller amount of training data. We have used the set of
100 train images for our regression forest. This is significantly lower in contrast to
Pischulin et al. ([2],[33]), where they train with 1000 images. Similarly, Johnson
and Everingham [8] train with 10000 images. The reason for achieving similar
results is that Random Forests can generalise to unknown poses. The only case
where we have lower performance is at the lower arms due to the blurry input.
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Fig. 3: KTH Football: Qualitative results of our algorithm on some samples. The
main feature of the dataset is the motion variation.

4.4 Volleyball dataset

We propose the Volleyball dataset 1 for 2D human pose estimation. The dataset
is composed of 800 training image of men and 205 testing images of women
playing volleyball. We have used two different volleyball matches to create the
dataset. The main feature of this dataset is the low quality and noisy image
data. In Figure 5, we demonstrate some samples of the Volleyball dataset with
the inferred pose. Evaluating on this type of data, we would like to highlight
that our holistic model can cope with incomplete data.

Head Torso Upper Arms Lower Arms Upper Legs Lower Legs Avg.
Our method 97.5 81.4 54.4 19.3 65.1 81.2 63.8
Yang&Ramanan[3] 76.1 80.5 40.7 33.7 52.4 70.5 59.0

Table 3: Volleyball: PCP evaluation results for different body parts.

We have evaluated our method on the Volleyball dataset using the PCP
evaluation score. In order to compare with another approach, we have trained
and tested the code of Yang and Ramanan [3]. The results are summarized in
Table 3. We perform better for most of the body parts but we have achieved
worse results for the lower arms. This happens because the lower arms are often
fully occluded and then the forest predicts an average pose.

5 Conclusion

We have presented a holistic model for human pose estimation from 2D images.
The model has been built on Random Forests and image patches. We have
demonstrated that our formulation delivers state-of-the-art results by evaluating
on two datasets and comparing with other approaches. We have also introduced
a new challenging dataset which main feature is the noise and the low quality
of image data. In all datasets, we have showed that our holistic approach can
perform well and equally compete with the most recent part-based approaches.
1 http://campar.in.tum.de/Chair/SingleHumanPose
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Fig. 4: Image Parse: Qualitative results of our algorithm on some samples. The
dataset has large appearance variation.

Fig. 5: Volleyball: Qualitative results of our algorithm on some samples. This is a
new challenging dataset with low resolution and noisy images.
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