
Ultrasound-Guided Robotic Navigation
with Deep Reinforcement Learning

Hannes Hase∗,1, Mohammad Farid Azampour∗,1,2, Maria Tirindelli1,
Magdalini Paschali1, Walter Simson1, Emad Fatemizadeh2 and Nassir Navab1,3

Abstract— In this paper we introduce the first reinforcement
learning (RL) based robotic navigation method which utilizes
ultrasound (US) images as an input. Our approach combines
state-of-the-art RL techniques, specifically deep Q-networks
(DQN) with memory buffers and a binary classifier for deciding
when to terminate the task.

Our method is trained and evaluated on an in-house collected
data-set of 34 volunteers and when compared to pure RL and
supervised learning (SL) techniques, it performs substantially
better, which highlights the suitability of RL navigation for
US-guided procedures. When testing our proposed model, we
obtained a 82.91% chance of navigating correctly to the sacrum
from 165 different starting positions on 5 different unseen
simulated environments.

I. INTRODUCTION

The rise of robotics and their gradual permeation into the
field of medicine is a revolution on its own. By integrating
robotic systems in the medical work-space, doctors are en-
abled to treat individual patients in a more efficient, safer and
less morbid way. However, end-to-end automated approaches
are constrained by the adaptability to unexpected situations
and the poor judgment of robotic systems [1].

With ever-improving ultrasound (US) technology, US is
being increasingly used in diagnostics and interventions.
Unlike other modalities like computed tomography (CT), US
provides real-time dynamic physiologic information while
being radiation free and comparatively cheap. Yet, the quality
of an US image suffers from artifacts such as speckle and
clutter, has a low signal to noise ratio and is strongly subject
dependent [2]. Another downside is the high inter-observer
variability when acquiring US images, which calls for trained
sonographers to guarantee clinically relevant images. It is the
lack of specialists that opens the need for robotic imaging
techniques [3]. The mentioned difficulties associated with
US imaging make the task of autonomous US navigation
extremely challenging.

Robotic ultrasound (rUS) in the medical field has been
investigated to improve working conditions for doctors and
also to increase the accuracy of interventions [4], [5].
Tirindelli et al. in [6] attempt to automate spinal navigation
by using a combination of force data and US image. How-
ever, this procedure still requires to be set-up by a technician.

∗These authors contributed equally to this work
1Computer Aided Medical Procedures, Technische Universität München,

Munich, Germany hannes.hase@tum.de
2Sharif University of Technology, Tehran, Iran

mf.azampour@tum.de
3Computer Aided Medical Procedures, John Hopkins University, Balti-

more, MD, USA

Automatic navigation towards specific positions without any
human intervention on the human body is still not resolved,
to the best of our knowledge.

Reinforcement learning offers an interesting and novel
approach, as it excels at sequential decision making and
exploratory tasks [7]. Reinforcement learning has shown
superhuman performance on Atari games [8] in which the
agent only decides what to do based on visual input. This
has already been translated to real-life applications in visual
robotic manipulation, such as the general task of grasping [9]
or in visual navigation for humanoid robots playing soc-
cer [10]. Even in the medical field, initial attempts have
been made to exploit the strengths of RL. For instance, [11]
proposes to use RL to find landmarks in fetal magnetic
resonance imaging (MRI) scans, in order to improve 3D-
imaging.

With the goal of expanding the applications of RL in the
medical sector, we work towards the full automation of spinal
navigation solely relying on US images for the decision
making. Towards this end we propose a method using a
combination of RL and supervised learning (SL) overcoming
disadvantages of both approaches.

In detail, our contributions are:

1) The acquisition of an in-house data-set of lower back
US sweeps on volunteers using a robot for accurate
tracking of the frames.

2) Training an RL agent on simulated lower-back environ-
ments to find correct views of the sacrum while navi-
gating the environments only relying on US frames.

II. RELATED WORK

A. Deep Reinforcement Learning

RL is one of the three main paradigms, of machine
learning, alongside supervised and unsupervised learning [7].
In RL, an agent interacts with an environment and aims
at maximizing an accumulated reward that results from
its actions. Arulkumaran et al. provides a comprehensive
overview of the developments of deep reinforcement learning
(DRL) [12]. In RL an agent is trained to complete a task via
specialization in goal-directed learning. An environment is
modeled in which the agent can explore and associate actions
with rewards and thus, learn how to achieve the defined
goal [7]. For matters of this study, we discuss DRL further
in the methodology section.

ar
X

iv
:2

00
3.

13
32

1v
2 

 [
cs

.L
G

] 
 7

 A
pr

 2
02

0



Fig. 1. Setup for robotic ultrasound acquisition. Ultrasound probe is attached to the robot end-effector using a 3D printed holder. Main workstation will
store the frames acquired by the US machine alongside the tracking data from the robot.

B. Reinforcement Learning for Robotic Manipulation

Vision-based robotic manipulation with reinforcement
learning is first investigated in [13]. Zhang et al. train an
agent to autonomously steer a robot to reach a target using
raw pixels as the sole input. While training and testing
using simulated environments provide promising results,
their approach fails when transferred to real-world appli-
cations. In [9], the authors propose a benchmark for the
general task of grasping using popular RL methods like deep
Q-learning (DQL) and deep deterministic policy gradient
(DDPG). Based on their results, DQL translates into more
stable agents in case of small data-sets, whereas Monte Carlo
methods provide better results on larger sets. They report a
success-rate of 50% on a relatively small data-set of 10k
samples.

C. Reinforcement Learning in Medicine

Chu et al. combine online SL and RL for improving the
efficiency of breast cancer diagnosis in clinics on multi-
modal data [14]. The online SL assesses breast cancer risk
based on the available patient data and examinations. The
doctor then decides if the confidence of the diagnostic was
high enough. If the confidence is not enough, the RL part of
the framework recommends the next best measurements or
exams that would improve the diagnostics’ confidence.

Initial exploratory works have experimented with visual
RL for medical applications. Milletari et al. [15] successfully
propose DRL to perform action suggestion for sonographer
guidance. In this seminal work a DRL agent successfully
learns a policy to guide inexperienced medical personnel

to obtain clinically relevant cardiac ultrasound images of
the parasternal long-axis view. The authors simulate the RL
environments by projecting a grid on subjects’ chests and
populating the grids’ sectors or bins with in-vivo US-frames
collected on a set of volunteers. At inference time, the user
acts as the agent and is provided motion recommendations
by the RL-policy; manually closing the loop of navigation.
Building on this work, we close the agent-policy loop by
adding a robotic actuator to manipulate the ultrasound probe
based on the RL-policy. Additionally, we improve the DQN
by adding memory to the model and using a binary classifier
for stopping.

III. METHODOLOGY

A. Reinforcement Learning

RL-problems are often modeled as Markov Decision Pro-
cesses (MPD). A MDP is a sequential decision problem for
a fully observable, stochastic environment with a Markovian
transition model and additive rewards. It consists of a set of
states S, a set of actions for each state Sa, a transition model
P (s′|s, a) and a reward function R(s) [7]. In our work, the
agent relies exclusively on visual input in the form of an US
frame. Thus, the agent does not explicitly know its state and
needs to estimate it. This turns the problem into a partially
observable MDP (POMDP).

B. Deep Q-Learning

Q-Learning is a form of model-free off-policy RL that
enables agents to learn optimal behavior in Markovian do-
mains. The agent learns to estimate Q-values, defined as the



V(s)

Feature 
Extractor 
(ResNet18)

Classifier
(ResNet18)

FC
 + R

eLU

FC
 + R

eLU

Action history

FC
 + R

eLU A(s,a)-A(s,a)+
V(s)

FC
 + R

eLU64 64 1

512

512

537 4

25

512

Advantage
stream

State value stream

Q-Value

STOP

action

f

Vanilla DQN

Memory stream

Sacrum classifier

Current frame
272 x 258

Previous frames

Q-Network

Fig. 2. Overall network architecture. The solid arrow represents the V-DQN. The broken and the dotted line, describe the changes introduced by M-DQN
and MS-DQN in the V-DQN, respectively. When not using the binary classification network for stopping, the stop action becomes part of the Q-value
layer as a fifth value.

long term reward of performing a certain action in a given
state [16]. An RL-agent is trained by exposing it to random
transitions represented by the tuple (s, a, r, s′), where s, s′

are the states, a is the chosen action and r is the reward
gained at step t and t + 1 respectively. The transitions are
acquired by the agent while interacting with the environment
and stored in a replay memory to break temporal correlations.
The training batches are sampled from the replay memory
and fed into the DQN for training. The Q-values are learned
by iteratively improving the estimates based on the results of
the interaction with the environment, following the equation:

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (1)

where α corresponds to the learning rate and γ to the
discount factor.

When the model converges to an optimal solution, we get
the optimal action for a state s by doing argmax(Q(s, a)).

The main difficulty of Q-learning’s traditional look-up
table method is successfully learning in environments with
large state-spaces. Mnih et al. [8] propose Deep Q-learning
(DQL) as a solution to this issue by approximating the the
Q-values with neural networks in the context of training a
RL-agent to play Atari video-games.

We improved the base DQN by including:

1) Double Deep Q-Network (DDQN): The base DQN
setup is difficult to train because the model’s neural
network (NN) is used for computing at the same time
the prediction and the target, leading to the targets
changing at each training step and making the training
unstable. This is solved by copying the DQN into a
second network referred to as the target network, where
the weights are fixed and updated based on the current
DQN’s weights every N training steps. By doing this,

we avoid Q-value over-estimations and achieve a more
reliable training. [17]

2) Dueling DQN: Wang et al. in [18] introduce the
splitting of the Q-value estimation into two streams,
as shown in Fig. 2. One the one hand, the advantage-
value stream A(s, a), estimates the short-term reward
that is achievable with each available action. On the
other hand, the state-value stream estimates the long-
term reward that is possible from that state. The Q-
values are then computed as detailed in Eq. 3.

3) Prioritized Replay Memory: The time-difference or
TD-error is defined in Q-learning as:

TD = r + γmax
a′

Qtarget(s
′, a′)−Q(s, a) (2)

and represents a measure of how unsuspected the
transition used for training is. When sampling tran-
sitions for training, the transitions probability of being
selected is dependent on its TD-error. Hereby, tran-
sitions with relevant information are prioritized for
training. [19]

This setup we call V-DQN. We define It as the input frame
at time t, φ(·) as the feature extractor, fv and fA as the value
and action advantage estimators, respectively. The Q-values
of the V-DQN model are a function of the current frame
following Eq. 3.

V (s) = fv(φ(It))

A(s, a) = fA(φ(It), a) (3)
Q(s, a) = A(s, a)− Ā(s, a) + V (s)

In this work, we add two input streams of previous
transitions in the environment. The first one corresponds to
the previous frames, as done in [8]. For the second one,



we adapt the method proposed by [20] to take previous
actions into account. Eq. 4 defines the Q-value estimation
with memory with the modified inputs.

Φt = φ(It, It−1, ..., It−n)

V (s) = fv(Φt) (4)
As,a = fA(Φt, a, (at−1, ..., at−m))

The extracted features Φt from the current and previous
frames are passed to the value estimator. A(s, a) is defined by
the action advantage estimator parameterized by the extracted
features and previous actions. The actions are fed to the
model as concatenated one-hot-encoded vectors [21]. The
setup is referred to as M-DQN.

In order to address the sparsity of situations with valid
stopping criteria the agent is exposed to (finding itself in
a goal bin), we add a binary classifier to determine when
the stopping criteria has been reached. By doing so, we
modify the reward function detailed in Table I by removing
the stopping decision. We call this MS-DQN.

We train the feature extraction for all RL models and
the binary classification network using a ResNet18 archi-
tecture [22]. Feature extraction is performed by removing
the batch-normalization layers and the final average pooling
layer to feed raw features into the state and advantage value
estimators.

C. Problem setting

With this work we aim at teaching an RL agent to
successfully find the sacrum reacting only on information
gained from US frames received, while navigating in the
spinal region. In other words, we aim to solve a search
task with two degrees of freedom (DoF), on a defined plane
situated parallel to the back of the subject. We call this plane,
the parallel plane. To state our problem as an POMDP, we
define the following terms:

1) Action space: The action space Sa is comprised of the
actions up, down, left, right, stop in the V-DQN and M-
DQN. In the case of MS-DQN, the stop action is triggered
by the binary classifier fstop().

2) State: The state of the environment is defined as the
probe’s position relative to the sacrum in the parallel plane.
The state is fully defined by the position, thus complying
with the Markovian property of the problem setting and the
feasibility of using MDPs.

3) Observation: As our problem setting is modeled by a
POMDP, the state is not known to the agent and needs to be
estimated based on an observation O(s) in the form of an
US frame it receives from the environment. The observations
are defined by the state the agent finds itself in, while the
observation defines the best action chosen by the agent.
Therefore, we can say that an agent that can estimate its state
correctly is an agent that understands its environment and is
more likely to successfully navigate towards its goal. In our
problem setting, the randomness in the observations comes
from the anatomical differences and an eventual acquisition
interference differences between subjects.

4) Reward function: We label bins that contain frames
showing the sacrum as correct and defined numerical rewards
given to the agent depending on direction of the actions in
relation to the goals. The used reward function is detailed
in table I. The reward function heavily punishes incorrect
stopping, as this would terminate the exploration in a wrong
position. It also penalizes getting caught in back and forth
movements, as by that behavior the agent would accumulate
a net negative reward over time.

TABLE I
THE REWARD FUNCTION FOR THE AGENT IS DEFINED BY A DISCRETE

SET OF REWARD VALUES. THE VALUES ARE DEFINED AS TO HEAVILY

PENALIZE INCORRECT STOPPING AND STRONGLY ENCOURAGE CORRECT

STOPPING. THE REWARD WEIGHTS FOR THE MOVEMENT ACTIONS ARE

SELECTED SO THAT INTER-MOVEMENT OSCILLATORY MOTION IS

MINIMIZED.

Situation Reward
Move closer 0.05
Move away -0.1
Correct stop 1.0

Incorrect stop -0.25

5) Simulated robot navigation implementation: We con-
duct simulated testing, by initializing our test environments at
determined positions or states. We face our models with US
frames obtained at that state and acted on the environment
based on the action chosen by the agent. The simulated
navigation is implemented as explained in Alg. 1.

Algorithm 1: Simulated Robot Navigation
Result: MS-DQN Robotic Navigation

1 st = int(rand() ∗ 164) ; // init state
2 t = 0;
3 tmax = 20;
4 F = [] ; // frame memory buffer
5 A = [] ; // action memory buffer
6 while t < tmax ∧ at ∈ Sa do
7 Ot = fE(st) ; // US frame
8 at = fstop(Ot) ; // check stop
9 if at 6= stop then

10 at = argmax(fMS−DQN (Ot)) ; // action
11 end
12 if at == stop then
13 break ; // sacrum reached
14 else
15 st+1 = E(at) ; // update state
16 end
17 F[t] = Ot ; // frame to buffer
18 A[t] = at ; // action to buffer
19 t = t+ 1
20 end



(a) (b) (c) (d)

Fig. 3. The images above display exemplary US image samples from two of the subjects in the data-set. Each row belongs to one subject. The images
correspond to (a) Left posterior pelvis; (b) L3 vertebra; (c) Sacrum; (d) Right lumbar region. In Fig. 4, the position of each frame in the projected grid on
subjects is shown. These images show the variability of the same anatomical structure as seen in the US images between different subjects.

IV. EXPERIMENTAL SETUP

A. Project setup

For data acquisition, we use a 7-axis robot certified for hu-
man interaction of the model KUKA LBR iiwa 7 R800 ma-
nipulator (KUKA Roboter GmbH, Augsburg, Germany). The
robot control runs on the Robotic Operating System (ROS)1

using a custom software interface developed in our lab2.
The Ultrasound probe is attached to the end-effector with
a 3D-printed mount. To receive the US-frames, we used an
Epiphan DVI2USB 3.0 frame-grabber (Epiphan Systems Inc.
Palo Alto, California, USA) with a resolution of 800x600
pixels and a sampling frequency of 30 fps. We control the
robot and process the images from a fixed workstation (Intel
i5, NVIDIA GeForce GTX 1080). The image processing and
robot control are implemented via custom software plugins
integrated into the visualization framework ImFusionSuite3

platform (ImFusion GmbH, Munich, Germany).
Ultrasound acquisitions are performed with a L8-3 linear

US transducer and a Zonare z.one ultra sp Convertible Ultra-
sound System (ZONARE Medical Systems, Inc., Mountain
View, California, United States). The imaging depth is set to
70 mm and an overall image gain of 90%. The robot is used
with a compliant force control set to a maximum applied
force of 2 N in the z axis.

1http://www.ros.org/
2https://github.com/IFL-CAMP/iiwa stack
3https://www.imfusion.de/

B. Data-set

Our data-set4 collected in-house is comprised of US scans
from the lower back of 34 volunteers in total. Each scan
consists of eleven sweeps parallel to the spine with an off-set
of 2 cm. We divide each sweep into 15 equally long segments
and mapped the acquired frames to a grid of 11x15 bins. We
fill each bin with five frames the agent would encounter when
finding itself in that position. With this grid, we can simulate
x-y navigation of the environment for training and testing the
performance of the agent. In Fig. 3, we showcase different
frames the agent could encounter in the grid.

We build one training set of 25 subjects containing a
variety of acquisition qualities (artifacts, low resolution ac-
quisitions, hard to recognize anatomies) to assure the model
would be exposed to non-ideal training data. For validation
and testing, we assemble a set of nine subjects with high
quality scans (four and five respectively). We show the
difference of the frames in Fig. 3.

C. Implementation

1) Framework setup: Our framework is written on the
deep learning (DL) library Tensorflow and extends RL-
zoo [23] and stable-baselines [24]. Our code is publicly
available on Github 5.

2) Model Training: For training our models, we randomly
initialize the agent in a random training environment and
give it 50 attempts or steps to reach the goal. We define

4https://github.com/hhase/sacrum data-set
5https://github.com/hhase/spinal-navigation-rl

http://www.ros.org/


Fig. 4. Frame grid projected on the back of one of our volunteers. Here we
show how the grid is positioned over the spine. The letters indicate where
each sample frame in Fig. 3 is approximately located.

this process as a training episode. The training episode is
terminated when either the agent chooses the stop action
or reaches the maximal permitted amount of steps. While
training, the agent follows an ε-greedy policy, meaning that
the agent has a probability ε of behaving randomly, instead
of choosing the action associated with the highest Q-value.
By this, we address the exploration-exploitation dilemma [7],
giving the agent a possibility to explore its environment to
find eventual long term rewards. ε decays to 0.02 at a third
of the total duration of the training.

For the binary classification model for stopping, we assign
the frames containing a correct view of the sacrum to one
class and the rest to another. For training, we over-sampled
the underrepresented class (frames containing the sacrum) to
compensate for the class imbalance. We augment the data-set
with rotations and re-sized crops to generalize better. With
this network, we obtain consistent accuracy of over 99% on
the test set.

Regarding the baseline, we use a standard DenseNet-121
architecture [25] to train a classification network, where the
predicted class corresponds to the chosen action.

3) Metrics: For testing our models, we initialize the agent
in each of the 165 possible states of the unseen environments
and give the agent 20 actions to reach the goal. We call each
of these tests a run.

As results, we report two performance indicators: policy
correctness and reachability. To compute the policy correct-
ness we define nc as the number of correct actions taken
in the run r and nt as the number of total actions taken
in the run on environment e. E is the total number of test
environments and R is the total amount of runs tried on each
of them. The policy correctness is computed as detailed in
Eq. 5.

correctness =
1

ER

E∑
e=0

R∑
r=0

nc(e, r)

nt(e, r)
(5)

We define reachability as the ratio between runs that lead
the agent to a stopping decision in a goal bin and the total
number of runs. A run is not considered successful if the
agent ends up in a goal bin but fails to stop. To compute
reachability we define g as a boolean variable that is 1 if the
goal is reached in run r on environment e and 0 if not. To
compute the reachability we use Eq. 6.

reachability =
1

ER

E∑
e=0

R∑
r=0

g(e, r) (6)

In Fig. 5, we show an example of a successfully testing
run. In the case of this run, nc = nt = 5, as all the actions
are taken in direction of the goal. Regarding reachability,
g(e, r) = 1, because the agent successfully found the sacrum.

1

2

34

1

234

5

5

Fig. 5. Possible navigation sequence the agent would follow starting on
the right lumbar region. The corresponding frames to the visited bins are
labeled with the step number. In step number five the agent identifies a goal
state. The sacrum is enclosed in the white bounding box.

V. RESULTS AND DISCUSSION

We choose the best model in each case, based on the
median reachability value achieved on the validation set. We
find that the median gives a more reliable measurement of
the performance of the model, given the small validation set
and strong subject dependency on the performance.

TABLE II
PERFORMANCE OF THE DIFFERENT PROPOSED ARCHITECTURES

NN architecture Policy correctness Reachability
Classification CNN 58.42% 59.64%

V-DQN 55.37% 18.30%
M-DQN 49.49% 36.97%

MS-DQN 79.53% 82.91%



To begin with discussing the results from table II, we can
see that the V-DQN is outperformed by the M-DQN, by
20% when it comes to reachability. We attribute this to the
inclusion of previous frames and actions. Now, the agent
can recognize when it is stuck in a loop and break out of
it. Therefore, the M-DQN can perform substantially better
than the V-DQN in that aspect. However, the V-DQN still
outperforms the M-DQN in terms of policy correctness by
6%, and we can attribute this fact that the memory makes
agent of the M-DQN follow sub-optimal paths when navi-
gating towards the goal. However, our proposed approach to
combine a DQN with a memory buffer and a binary classifier
for stopping, substantially outperforms the other baselines in
both, policy correctness by 20 to 30% and in reachability by
40 to 60%.

These results signify the fact that the proposed RL ap-
proach is suitable for the task at hand since it delivers
promising results in a challenging task like navigating the
spinal region and successfully localizing the sacrum. We
attribute the improvement to the inclusion of the binary
classifier for stopping because, in our problem statement, the
stopping action is the most difficult to achieve for pure DQL.
This difficulty arises because during the initial exploration
phase during training, when following the ε-greedy policy
with a high probability of choosing random actions, the
stopping action is most likely to be incorrect and thereby,
heavily punished. Also, because the reward function assigns
comparatively large positive and negative rewards to the
stopping action, the agent learns to avoid to stop when
not entirely confident. The inclusion of a prioritized replay
memory trying to counter the sparsity of transitions leading
to a successful stop does not solve this shortcoming.

When looking at the classification network approach, we
find that by not having memory, the classification agent easily
gets stuck in loops and does not reach the goal. However, it
proves to have better results when comparing to our V-DQN
as its RL counterpart, as it is easier to train a classification
network than a DQN. The difference between SL and RL
in visual navigation lays in the fact that SL decides the
next-best-action based on features extracted from the input
frame. In contrast, RL selects actions based on the estimated
reward it can achieve from the state it is on. Nonetheless,
comparing our proposed DQN setup with the classification
network, the results still highlight the advantage of RL for
navigation tasks.

A determining factor of the performance an RL agent
has on unseen environments is the capability to correctly
estimating the state it is in, as this gives the agent a notion on
the value of its position within the environment. In Fig. 6, we
show the state-value estimates on the same test environment
for each of our DQN models. For comparison, we also show
the state value estimates of one of our train environments as
a ground truth. When comparing the ranges of the values on
the different state value maps, we see that the only model
achieving a similar range as the ground truth is our proposed
MS-DQN. The fact that the V-DQN is estimating worse than
the M-DQN also reflects the results from table II.

(a) (b)

(c) (d)

Fig. 6. State value estimate maps. (a) corresponds to an training envi-
ronment to showcase a ground truth to compare to the other state value
maps obtained from the same test environment when using our three DQN
setups. (b) is estimated with the V-DQN, (c) with the M-DQN and (d)
with the MS-DQN. For this image, we subtracted the minimum state-value
estimate of each map, to be able to compare them with the MS-DQN, as this
setup does not have the rewards associated with stopping. The red bounding
boxes show the goal bins.

Besides the differences in the state-value estimations, we
can see that it is hard to estimate state-values in unseen
environments accurately. However, the ultimate goal of our
models is mapping US-frames to actions. The information
about the best action choice is contained in the advantage-
value estimates, meaning that the agent is still able to take
correct actions, despite being wrong about its state.

As shown in our results, however, pure RL struggles on
its own with issues like reward sparsity and performance in
unseen environments. Solving specific shortcomings of RL
with SL proves to be very beneficial and needs to be explored
further.

VI. CONCLUSIONS

In this paper, we introduce a reinforcement learning-
based ultrasound-guided robotic navigation. Despite the large
anatomical variability within our volunteers, in a challenging
task of spinal navigation to locate the sacrum, we showcased
the superiority of our proposed approach against DQN and
classification baselines. Introducing a binary classifier for
deciding when to stop, brought substantial improvement to
the method. Better results can be obtained by increasing our
data-set. To move forward to an online implementation in a



medical setting an ethical approval would be needed.

REFERENCES

[1] R. H. Taylor, “A perspective on medical robotics,”
Proceedings of the IEEE, vol. 94, no. 9, pp. 1652–
1664, Sep. 2006, ISSN: 1558-2256.

[2] A. Hindi, C. Peterson, and R. G. Barr, “Artifacts in
diagnostic ultrasound,” Reports in Medical Imaging,
vol. 6, pp. 29–48, 2013.

[3] J. Guo, H. Li, Y. Chen, P. Chen, X. Li, and S. Sun,
“Robotic ultrasound and ultrasonic robot,” Endoscopic
Ultrasound, vol. 8, p. 1, Jan. 2019.

[4] J. Esteban, W. Simson, S. Requena Witzig, A.
Rienmüller, S. Virga, B. Frisch, O. Zettinig, D. Sakara,
Y.-M. Ryang, N. Navab, and C. Hennersperger,
“Robotic ultrasound-guided facet joint insertion,” In-
ternational Journal of Computer Assisted Radiology
and Surgery, vol. 13, no. 6, pp. 895–904, Jun. 2018,
ISSN: 1861-6429.

[5] C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B.
Frisch, T. Neff, and N. Navab, “Towards mri-based
autonomous robotic us acquisitions: A first feasibility
study,” IEEE transactions on medical imaging, vol.
36, no. 2, pp. 538–548, 2016.

[6] M. Tirindelli, M. Victorova, J. Esteban, S. T. Kim,
D. Navarro-Alarcon, Y. P. Zheng, and N. Navab,
Force-ultrasound fusion: Bringing spine robotic-us
to the next ”level”, 2020. arXiv: 2002 . 11404
[eess.IV].

[7] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction, Second. The MIT Press, 2018.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. A. Riedmiller, “Play-
ing atari with deep reinforcement learning,” CoRR,
vol. abs/1312.5602, 2013. arXiv: 1312.5602.

[9] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz,
and S. Levine, “Deep reinforcement learning for
vision-based robotic grasping: A simulated compar-
ative evaluation of off-policy methods,” in 2018 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE, 2018, pp. 6284–6291.

[10] K. Lobos-Tsunekawa, F. Leiva, and J. Ruiz-del-Solar,
“Visual navigation for biped humanoid robots using
deep reinforcement learning,” IEEE Robotics and Au-
tomation Letters, vol. 3, no. 4, pp. 3247–3254, Oct.
2018, ISSN: 2377-3774.

[11] A. Alansary, O. Oktay, Y. Li, L. Folgoc, B. Hou,
G. Vaillant, K. Kamnitsas, A. Vlontzos, B. Glocker,
B. Kainz, and D. Rueckert, “Evaluating reinforcement
learning agents for anatomical landmark detection,”
Medical Image Analysis, vol. 53, Feb. 2019.

[12] K. Arulkumaran, M. Deisenroth, M. Brundage, and
A. Bharath, “A brief survey of deep reinforcement
learning,” IEEE Signal Processing Magazine, vol. 34,
Aug. 2017.

[13] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and
P. Corke, “Towards vision-based deep reinforcement
learning for robotic motion control,” ArXiv preprint
arXiv:1511.03791, 2015.

[14] T. Chu, J. Wang, and J. Chen, “An adaptive online
learning framework for practical breast cancer diag-
nosis,” in Medical Imaging 2016: Computer-Aided
Diagnosis, G. D. Tourassi and S. G. A. III, Eds., Inter-
national Society for Optics and Photonics, vol. 9785,
SPIE, 2016, pp. 537–548.

[15] F. Milletari, V. Birodkar, and M. Sofka, “Straight to
the point: Reinforcement learning for user guidance in
ultrasound,” CoRR, vol. abs/1903.00586, 2019.

[16] C. J. Watkins and P. Dayan, “Q-learning,” Machine
learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[17] H. van Hasselt, A. Guez, and D. Silver, “Deep re-
inforcement learning with double q-learning,” CoRR,
vol. abs/1509.06461, 2015. arXiv: 1509.06461.

[18] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling net-
work architectures for deep reinforcement learning,”
CoRR, vol. abs/1511.06581, 2015.

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Sil-
ver, “Prioritized experience replay,” ArXiv preprint
arXiv:1511.05952, 2015.

[20] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Young Choi,
“Action-decision networks for visual tracking with
deep reinforcement learning,” in Proceedings of the
IEEE conference on computer vision and pattern
recognition, 2017, pp. 2711–2720.

[21] K. P. Murphy, Machine learning: A probabilistic per-
spective. The MIT Press, 2012, ISBN: 0262018020.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015. arXiv: 1512.03385.

[23] A. Raffin, Rl baselines zoo, https://github.
com/araffin/rl-baselines-zoo, 2018.

[24] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kan-
ervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov,
A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, and Y. Wu, Stable baselines, https://
github.com/hill-a/stable-baselines,
2018.

[25] G. Huang, Z. Liu, K. Weinberger, and L. van der
Maaten, “Densely connected convolutional networks.
arxiv 2017,” ArXiv preprint arXiv:1608.06993,

http://arxiv.org/abs/2002.11404
http://arxiv.org/abs/2002.11404
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1512.03385
https://github.com/araffin/rl-baselines-zoo
https://github.com/araffin/rl-baselines-zoo
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	I Introduction
	II Related Work
	II-A Deep Reinforcement Learning
	II-B Reinforcement Learning for Robotic Manipulation
	II-C Reinforcement Learning in Medicine

	III Methodology
	III-A Reinforcement Learning
	III-B Deep Q-Learning
	III-C Problem setting
	III-C.1 Action space
	III-C.2 State
	III-C.3 Observation
	III-C.4 Reward function
	III-C.5 Simulated robot navigation implementation


	IV Experimental setup
	IV-A Project setup
	IV-B Data-set
	IV-C Implementation
	IV-C.1 Framework setup
	IV-C.2 Model Training
	IV-C.3 Metrics


	V Results and Discussion
	VI CONCLUSIONS

