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Semi-Supervised Few-Shot Learning with Local and Global Consistency
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Abstract

Learning from a few examples is a key charac-

teristic of human intelligence that AI researchers

have been excited about modeling. With the

web-scale data being mostly unlabeled, few re-

cent works showed that few-shot learning perfor-

mance can be significantly improved with access

to unlabeled data (Zhang et al., 2018; Ren et al.,

2018), known as semi-supervised few shot learn-

ing (SS-FSL). We introduce a SS-FSL approach

that we denote as Consistent Prototypical Net-

works (CPN), which builds on top of Prototyp-

ical Networks (Ren et al., 2018). We propose

new loss terms to leverage unlabelled data, by en-

forcing notions of local and global consistency.

Our work shows the effectiveness of our con-

sistency losses in semi-supervised few shot set-

ting. Our model outperforms the state-of-the-

art in most benchmarks, showing large improve-

ments in some cases. For example, in one mini-

Imagenet 5-shot classification task, we obtain

70.1% accuracy to the 64.59% state-of-the-art.

Moreover, our semi-supervised model, trained

with 40% of the labels, compares well against

the vanilla prototypical network trained on 100%

of the labels, even outperforming it in the 1-shot

mini-Imagenet case with 51.03% to 49.4% accu-

racy. For reproducibility, we make our code pub-

licly available.1

1. Introduction

Humans are capable of learning rich hypotheses from

’sparse, noisy, and ambiguous’ input data, posing a

grand and longstanding challenge to scientist and philoso-

phers: ”How do our minds get so much from so
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little?” (B Tenenbaum et al., 2011). In contrast, ar-

tificial learners require a massive amount of labeled

data to achieve a comparable performance in complex

tasks (Dodge & Karam, 2017). Thereby bringing the chal-

lenge to the machine learning community: How can we

build models that can ”get so much from so little?”. Build-

ing on the success of supervised training, much of the work

addressing the aforementioned question took the form of

modified supervised training with some additional chal-

lenge, meant to take us a step closer to models which

learn from ’sparse, noisy, and ambiguous’ input data. The

two relevant paradigms here are few-shot learning (FSL)

and semi-supervised learning (SSL). Those paradigms have

been largely independent, with most work addressing one

challenge or the other, we work on semi-supervised few-

shot learning (SS-FSL) (Ren et al., 2018), a new paradigm

combining the challenges of SSL and FSL.

The FSL paradigm is a testing grounds for the ability

to learn from few examples. Concretely, a learner is pre-

sented with a support set S containing K examples from

each of N classes, in order to learn to distinguish between

the classes. The learner is then required to classify some

query examples into the N classes. The FSL problem may

be formulated as a form of meta-learning (Thrun, 1998;

Hochreiter et al., 2001), where the learner trains on a col-

lection of classification tasks, generated from large quan-

tities of available data, to generalize well on classification

tasks over unseen classes. This formulation is analogous to

supervised learning, where each instance is a classification

task, rather than a single sample. In the meta-learning for-

mulation, there are two levels of learning; meta-training

is learning the shared model parameters to be used on fu-

ture tasks, adaptation is learning from the support set of a

given task to classify its query set.

The SSL paradigm is a testing ground for the abil-

ity of discriminative models to leverage unlabelled data.

Semi-supervised learning techniques come in many shapes,

some requiring specialized models (Rasmus et al., 2015)

or additional architecture components (Zhang et al., 2018;

Dai et al., 2017). We focused on discriminative methods

which come in the form of additional loss terms; they re-

quire little change to our models, no additional architec-

ture and are state-of-the art for SSL on image classification

datasets (Oliver et al., 2018) . In order to leverage unla-
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belled data in discriminative settings, SSL methods must

make some assumptions about the data.

The three most popular such assumptions are the smooth-

ness assumption, the cluster assumption, and the mani-

fold assumption (Chapelle et al., 2010). The smoothness

assumption states that points close together should hold

similar labels (local consistency). The cluster assumption

states that points of the same class tend to form clusters.

The manifold assumption states that data lies on a lower

dimensional manifold. It is usually combined with the clus-

ter assumption to state that points forming tight structures

over the manifold should hold similar labels (global con-

sistency). These consistency notions have so far not been

introduced to the SS-FSL setting.

In SS-FSL, the learner is presented with additional unla-

belled examples in the support set. The challenge is to

design few-shot models which perform better when such

data is provided. This unlabelled data may be leveraged

for meta-training, adaptation, or both. Currently, there

are only two published approaches to semi-supervised few-

shot learning (Ren et al., 2018; Zhang et al., 2018). The

method proposed in (Ren et al., 2018) for semi-supervised

PN, exploits unlabeled data on both learning levels (meta-

training and adaptation), however, we hypothesize that

while it is powerful for adaptation, it falls short for meta-

training. On the other hand, MetaGAN (Zhang et al., 2018)

has powerful semi-supervised meta-training, however, it

doesn’t leverage the unlabeled data in the adaptation step.

This motivates us to design a model which can leverage un-

labeled data in both meta-training, and adaptation.

Contributions. We present Consistent Prototypical Net-

works (CPN) where we boost the capabilities of Prototyp-

ical Networks by enforcing local consistency and global

consistency for our classifier. Local consistency is encour-

aged by enforcing the network prediction to be less sensi-

tive to an added noise. Global inconsistency is alleviated

by encouraging each prototype to reach itself after a ran-

dom walk through the points in the given mini batch. Since

the local consistency loss could be maximized by produc-

ing a high entropy distribution given an arbitrary input, the

global consistency loss brings a needed balance to the pro-

totypical network by discouraging it to make high entropy

predictions as we detail later.

The rest of this paper is organized as follows. Sec.2 present

our approach, then we situate our approach into the wider

literature in Sec.3. We present then our experiments and

results in Sec.4 where we set the state-of-the-art on most

benchmarks.

2. Approach

Our CPN approach is built on top of Prototypical

Networks (Snell et al., 2017) with an additional semi-

supervised losses to leverage the unlabelled data dur-

ing the meta-training phase. To formulate local con-

sistency loss, we were inspired to by successful ap-

proaches in SSL, namely virtual adversarial training

(VAT) (Miyato et al., 2018). To formulate our global con-

sistency loss, we were inspired by a random walk (RW)

loss from (Kamnitsas et al., 2018; Haeusser et al., 2017) to

smooth our classifier w.r.t. the data manifold.

Concretely, our semi-supervised loss LSSL = LV AT +
LRW . LV AT and LRW are defined in Sections 2.2.1

and 2.2.2 respectively. For adaptation, CPN can effec-

tively leverage the unlabeled data using the refinement step

in (Ren et al., 2018).

Next, we define the few-shot learning setup including the

episodic training and the prototypical networks, before we

explain our additional contributions in details.

2.1. Problem Definition.

Given a dataset D = {DL, DU}, where DL =
{(x1, y1), · · · , (xL, yL)} consists of tuples of xi as an in-

put instance and yi as the corresponding class label, and

DU = {xL+1, · · · , xL+U} denote all labeled and unla-

beled points, respectively, we aim to build a meta-learner,

i.e. N -shot K-way classifier, that can utilize both labeled

and unlabeled points during meta-training and adaptation.

In the context of Few-Shot learning, an N -shot K-way

classifier is tested on episodes E consisting of a support

set S = {(x1, y1), · · · , (xST
, yST

)}, and a query set Q =
{x1, · · · , xQT

}, where ST and QT are the number of in-

stances, provided at meta-testing phase, in the support and

query sets, respectively. The classifier then uses the sup-

port set to learn, and predict the classes of given instances

in the query set. Training is performed in the same episodic

fashion as testing.

For the semi-supervised Few-Shot learning, additional

unlabelled examples are provided within each episode.

The unlabelled examples mainly come from the avail-

able classes in the episode, however additional distractor

classes might be added to make the setting more challeng-

ing and realistic.

In the next subsections, we briefly explain the SS-FSL

episode construction, then we overview prototypical net-

works and present our approach.

2.1.1. SS-FSL EPISODE CONSTRUCTION

For simplicity, we follow the same construction appeared

in (Ren et al., 2018), however, we added few more nota-
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Algorithm 1 Construct a semi-supervised episode E, op-

tionally with distractors.

RANDOMSAMPLE(S, N) denotes a set of N elements cho-

sen randomly from set S, without replacement. Items sam-

pled from the labeled split are tuples (xi, yi), while items

sampled from the unlabeled split are simply (xi)

Require: Nc {The number of classes or way}
Ns {The number of examples per class or shot}
Nq {The number of query images per class}
Nu {The number of unlabeled examples per class in the

support set}
Nd {The number of distractor classes per episode}

V ← RANDOMSAMPLE({1 · · ·K} , Nc)

for k ∈ V do

Sk,L ← RANDOMSAMPLE(Dk,L , Ns)

Sk,U ← RANDOMSAMPLE(Dk,U , Nu)

Qk ← RANDOMSAMPLE(Dk,L , Nq)

Q ← Q∪Qk

S ← S ∪ (Sk,L ∪ Sk,U )

end for

if DISTRACTOR then

L← RANDOMSAMPLE({1 · · ·K}/V , Nd)

for k ∈ L do

S ← S ∪ RANDOMSAMPLE(Dk,U , Nu)

end for

end if

tions for SS-FSL. For instance, Dk,L denote all labeled

point x ∈ class(k), and Dk,U be all unlabeled point

x ∈ class(k). Analogous notation holds for our support

and query set, S and Q. Pseudo-code for the construction

of a semi-supervised episode is provided in algorithm 1.

2.1.2. PROTOTYPICAL NETWORKS

Prototypical networks (Snell et al., 2017) aim to train a neu-

ral network as an embedding function mapping from input

space to a latent space where points of the same class tend

to cluster. The embedding function Φ(·) is used to compute

a prototype for each class, by averaging the embeddings of

all points in the support belonging to that class,

pc =
1

|Sc,L|

∑
xi∈Sc,L

Φ(xi), (1)

where pc is the prototype for our cth class. Once proto-

types of all classes are obtained, query points are also em-

bedded to the same space, and then classified based on their

distances to the prototypes, via a softmax function. For in-

stance, for a point xi, with an embedding hi = Φ(xi), the

probability of belonging to class c is computed by

zi,c = p(yc|xi) =
exp (−d(hi,pc))∑Nc

j=1 exp (−d(hi,pj))
, (2)

where d(·, ·) is the Euclidean distance.

In the semi-supervised variant (Ren et al., 2018), PN use

the unlabelled data to refine the class prototypes. This is

achieved via a soft K-means step. First, the class probabil-

ities for the unlabelled data zi,c are computed as in Eq.2,

and the labelled points have a hard assignment, i.e. zi,c is

1 if xi ∈ class(c) and 0 otherwise. Then the updated pro-

totype p̃c is computed as the weighted mean of the points

assigned to it,

p̃c =

∑
xi∈SU∪SL

hi · zi,c∑N

i=1 zi,c
. (3)

We can see that this is a task adaptation step, which does not

directly propagate any learning signal from the unlabelled

points to our model parameters. In fact, it may be used only

at inference time, and results from (Ren et al., 2018) show

that it is provides a significant improvement when used as

such. When used during training, information from the un-

labelled data flows to the network parameters through the

classification loss, and performance is improved even fur-

ther. However, our original motivation in building on this

work, was our belief that this approach while powerful as a

task adaptation step, it fails to fully exploit the unlabelled

data for meta-training.

SS-FSL with Adaption at test time. Our approach also

allows using the former K-means refinement step at infer-

ence time, but not during training. This is analogous to the

’Semi-supervised inference’ model from (Ren et al., 2018).

We perform experiments with adaptation where the adap-

tation unlabeled data may/may not include samples from a

distractor class (samples of classes that are not included in

the training episode).

2.2. Semi-Supervised Meta-Training

2.2.1. VIRTUAL ADVERSARIAL TRAINING LOSS

The first term is the VAT loss LV AT taken

from (Miyato et al., 2018). Underlying this loss is

the assumption of smoothness (Chapelle et al., 2010) or

local consistency; two points which are close together

should get similar labels. This idea is translated to the

practical notion that adding small perturbations to a point

should not change its label much. Concretely, let fθ be

our classifier which outputs a probability distribution

over classes, D(·, ·) some distance function and ǫ a small

perturbation: we want D(fθ(x), fθ(x+ ǫ)) to be small.

In PN we train a feature extractor rather than a full classi-

fier. Thus to compute the VAT loss for an episode we first

generate the prototypes using the labelled points SL, with

this we have a classifier and we can compute the VAT loss
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for an episode, LV AT = LV U + βV AT · LV L, where

LV U =
∑
x∈SU

D(fθ(x), fθ(x+ ǫ)),

LV L =
∑
x∈Q

D(fθ(x), fθ(x + ǫ)),

and βV AT is a hyperparameter.

To actualize this loss, we use the KL-divergence as

our distance function D(·, ·), and we choose the ad-

versarial noise vector, proposed in VAT, ǫadv =
argmaxǫ, ‖ǫ‖<r D(fθ(x), fθ(x+ ǫ)) as our noise vec-

tor. The choice of this noise was motivated by the work

in (Goodfellow et al., 2014b) which showed that training

classifiers, to be robust in the adversarial directions, im-

proved generalization. An approximation of ǫadv is pro-

vided in (Miyato et al., 2018).

It is worth mentioning that Miyato et al. 2018 found em-

pirically that VAT works better when coupled with an en-

tropy minimization loss (ENT), however no reasoning is

provided for this synergy. Intuitively, it is clear that there

is some counterbalancing effects between the two losses,

since the VAT loss may favor smooth functions and the en-

tropy loss favors sharp ones. For instance, let us imagine

our network maps all class prototypes to the same point,

producing a uniform class distribution for any point, the

VAT loss would go to zero, the entropy loss would be maxi-

mized. In the upcoming section, we introduce a loss which

implicitly requires low entropy outputs, but does much

more to leverage the unlabelled data.

2.2.2. RANDOM WALK LOSS

The VAT and entropy losses are local, it is easy to see that

each point’s loss is calculated independent of other points.

We introduce a global loss inspired by (Kamnitsas et al.,

2018; Haeusser et al., 2017), where the overall structure of

the embeddings manifold is considered, based on random

walks over similarity graphs.

Given an episode, we first need to compute the proto-

types, and embed the unlabeled points in our latent space.

Then we construct a similarity graph between the unlabeled

points’ embeddings and the prototypes. Our goal is to con-

struct a graph where the points of a class form a tight neigh-

borhood, well separated from other classes. This notion is

translated into the idea that a random walker over the graph

rarely crosses class decision boundaries. Here, we do not

know the labels for our points or the right decision bound-

aries, so we can not optimize for this directly. Analogous

to (Haeusser et al., 2017), we basically imagine our walker

starting at a prototype, taking a step to an unlabeled point,

and then stepping back to a prototype. The objective is to

increase the probability that the walker returns to the same

prototype it started from. Additionally, we can imagine our

walker taking some steps between the unlabelled points, be-

fore taking a step back to a prototype.

Concretely, for an episode with N classes, and M unla-

beled points overall, let A ∈ R
M×N be the similarity ma-

trix, such that each row contains the negative Euclidean dis-

tances between the embedding of an unlabelled point and

the class prototypes,

Ai,j = −‖hi − pj‖
2,

where hi = Φ(xi) is the embedding of the ith unlabeled

sample, and pj is the jth class prototype. Let B ∈ R
M×M

be the similarity matrix for the unlabelled points Bi,j =
−‖hi − hj‖

2. 2

Transition probability matrices for our random walker are

calculated by taking a softmax over the rows of similarity

matrices. For instance, the transition matrix from proto-

types to points is obtained by softmaxing AT ,

Γ(p→x) = softmax(AT ),

such that p(xi|pj) = Γ
(p→x)
i,j . Similarly, transition from

points to prototypesΓ(x→p), and transitions between points

Γ(x→x), are computed by softmaxing A, and B, respec-

tively.

Now, we define our random walker as

Γ(τ) = Γ(p→x) · (Γ(x→x))τ · Γ(x→p),

where τ denotes the number of steps taken between the un-

labelled points, before stepping back to a prototype. An

entry Γi,j denotes the probability of ending a walk at pro-

totype j given that we have started at prototype i, and the

jth row is a probability distribution over ending prototypes,

given that we started at prototype j.

Our objective is to maximize the probability in the diagonal

entry of the random walker. This can be achieved by min-

imizing the cross-entropy loss between the identity matrix

I and our random walker Γ,

Lwalker =

τ∑
i=0

αi ·H(I,Γ(i)),

where H(I,Γ) = − 1
Nc

∑Nc

i=0 logΓi,i, since those are prob-

ability distributions, and αi are hyperparameters to weigh

longer walks. 3

2To avoid our walker taking steps from a node back to itself,
the diagonal entries Bi,i need to be set to a sufficiently small num-
ber.

3To be exact, this is the average cross-entropy between the
individual rows of I and Γ
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Note that, for this equation to be minimized, we need a

configuration of points and prototypes such that if our ran-

dom walker has a non-trivial probability to going from pj

to xi, then the probability of going from xi to pj needs

to be 1. Of course, the transition probabilities from points

to prototypes are also the class probabilities PN output for

this point. So implicit in this loss, is that the our classifier

should output low entropy distributions, that is the goal of

entropy minimization loss.

However, one issue with this loss, is that we could end

up graphs where our random walker only visits a small

subset of the unlabelled points. To remedy this problem,

(Haeusser et al., 2017) introduce a ’visit loss’, pressuring

the walker to visit all unlabeled points. To do this, we as-

sume that our walker is equally likely to start at any pro-

totype, then we compute the overall probability that each

point would be visited when we step from prototypes to

points P = 1
Nc

∑Nc

i=0 Γ
(p→x)
i , where Γ

(p→x)
i represents a

row of the matrix . Then we minimize the standard cross-

entropy between this probability distribution and the uni-

form distribution Lvisit = H(U , P ). For stability reasons,

our transition matrices Γ(p→x) and Γ(x→p) are computed

as (1 − η) · Γ + η · U where U is the uniform transition

matrix. Our total random walker loss is thus

LRW = Lwalker + Lvisit.

3. Related Works

3.1. Semi-Supervised Learning

3.1.1. GRAPH-BASED SSL

There is a large number of graph-based SSL

approaches(Zhu et al., 2005; Zhou et al., 2004). These

methods operate over an adjacency matrix W , where Wi,j

is the similarity between samples xi, xj ∈ DL ∪ DU . The

similarity graph may be used either to propagate labels

from the labeled points to the unlabelled ones, or used to

compute some regularization term. The key equation of

graph-based approaches is

E(f,W ) =
∑

xi,xj∈DL∪DU

(f(xi)− f(xj))
2 Wi,j = ft∆f

(4)

where ∆ is the graph Laplacian, and f=[f(x1) · · · f(xn)]
a vector of labels we attach to our points. Intuitively, we

see that minimizing this equation entails having an f which

gives similar labels to similar points(i.e large Wi,j), or a

W which assigns low weight to points with differing labels.

Note that this is also the key equation for spectral clustering
4.

4with possible variations depending on the version of the
Laplacian being used.

In the inductive setting, we seek to choose a function f
which minimizes eq. 4, i.e. it is added as a regularization

term. Belkin et al. 2006 show that, under certain condi-

tions, this regularization is a proxy for minimizing the gra-

dient of f on the data manifold

∫
x∈M

‖∇Mf‖2dP(x) (5)

In the transductive setting, where f is a vector and we wish

to infer the labels for xi ∈ DU given the labels for xi ∈ DL.

Zhu et al. 2003 show that the unknown labels can be in-

ferred by minimizing eq. 4. This is related to label propa-

gation approaches, where labels flow in graph from labelled

nodes to unlabelled ones, through high density regions, un-

til equilibrium is reached (Zhou et al., 2004).

Some graph-based SSL approaches formulate their

problem in terms of random walks or Markov chains

over the similarity graph(Kamnitsas et al., 2018;

Haeusser et al., 2017; Szummer & Jaakkola, 2001).

These approaches can be inductive(Kamnitsas et al., 2018)

or transductive(Szummer & Jaakkola, 2001). In a classifi-

cation context, they typically aim to produce graphs, and

associated labels, such that transition probabilities are high

between similarly labelled nodes, and low otherwise. Zhu

et. al 2003 note a close relationship between this random

walk approach and minimizing eq. 4. It has also been

shown in the spectral clustering literature, that minimizing

eq. 4 is equivalent to finding a graph, and associated labels,

such that a random walker seldom crosses class decision

boundaries(Zhang & You, 2011; Von Luxburg, 2007). We

consider our objective, stipulating that a random walker

starting at a prototype should end up in the same prototype,

to be a practical proxy for the aforementioned random

walker objective.

It is important to note that, while most methods discussed

above assume a given similarity matrix, and optimize for

the f. That is, the structure of the manifold is fixed, and we

optimize f over that structure. Our approach, inspired by

(Kamnitsas et al., 2018; Haeusser et al., 2017), optimizes

the f and W matrix jointly; in fact both are products of the

same parameters.

3.1.2. PERTURBATION-BASED SSL

The use of perturbations in machine learning is a funda-

mental technique to improve generalization, and it extends

well beyond SSL. Dropout (Sajjadi et al., 2016b) is used

in supervised learning as a regularizer to prevent feature

co-adaptation and improve performance. It has also been

show to operate as a Variational approximation of the pos-

terior of neural network parameters (Gal & Ghahramani,

2016). Gaussian noise is also used in Variational Autoen-

coders to sample from the posterior over latent encodings
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(Kingma & Welling, 2013). In all those cases, the system

is required to output the right answer while being subjected

to noise. In SSL, where the answer is not available, noise

is used to enforce consistency. The general penalty here is

of the form

D(f(x), fperturb(x))

Where D is a distance function, f(x) the output of

our function on x, and fperturb(x) is the output with

an added perturbation. The perturbation could be

to the model parameters(Park et al., 2018), intermediate

representations(Bachman et al., 2014), or to the input

points(Miyato et al., 2018; Sajjadi et al., 2016a).

There are a few interpretations for this kind of approach

in the literature. Bachman et al. 2014 relate their method

to the notion that noise robustness improves generalization.

Wager et al. 2013 state the intuition behind their approach

is to find model weights that make confident predictions

on the labelled as well as the unlabelled data. Temporal

ensembling (Laine & Aila, 2016) presumes that the predic-

tions of an ensemble, are more accurate than those of a sin-

gle model under taken from the ensemble. Thus ensemble

predictions can be used to train single instances from the

ensemble.

Lecouat et al. 2018 take an interesting perturbation-based

approach which minimizes eq. 5, as with numerous graph-

based approaches. The main idea is to estimate eq. 5 by

perturbing points on the data manifold. In order to estimate

the norm of the gradient on the data manifold, noise must

be added in the latent space of the data. To achieve this, a

generative adversarial network (Goodfellow et al., 2014a)

to model the data manifold, and the latent space of the gen-

erator is then considered to be a faithful model of the data

distribution and manifold. Giving rise to the approximation

∫
x∈M

‖∇Mf‖2dP(x) ≈
1

n

n∑
i=1

‖Jzf(g(z
i))‖2 (6)

Where g is the generator, and J is the Jacobian and its

norm is then approximated with ‖f(g(z))− f(g(z + ǫ))‖2

where ǫ is Gaussian noise.

From this work, we see some connection between the

perturbation-based and the graph-based approaches. We

can now consider the approach where noise is added di-

rectly in the input space, as in VAT. This means that our

perturbed points can be ’knocked off’ the data manifold,

and if we were to perform the same estimation, as above,

we would be estimating the norm of the gradient around

the manifold, rather than on the manifold as in 5.

In VAT, we are not using Gaussian noise, but adding the

adversarial noise, and this has been shown to be a big com-

ponent in its effectiveness. Moreover, we are using the KL-

divergence to measure change, rather than the norm. How-

ever, it is clear that in VAT, functions would be penalized

for changing rapidly around the manifold. In contrast to

graph-based approaches, where change strictly off the man-

ifold is ignored.

3.2. Few-Shot Learning

The few-shot learning problem may be defined as training

over a distribution of tasksPtrain(T ) where each task is an

episode as described in 2.1, and at test time tasks are drawn

from a related distribution of tasks Ptest(T ). Much current

wave of FSL models can be broadly classified into three

strategies, learning a shared metric (Vinyals et al., 2016;

Snell et al., 2017; Satorras & Estrach, 2018; Sung et al.,

2018) , a shared initialization (Finn et al., 2017), a shared

optimizer (Ravi & Larochelle, 2017), or a generic infer-

ence model (Santoro et al., 2016; Mishra et al., 2018).

Generic inference models aim for versatility and generality,

by relying on a recurrent neural network, which take as in-

put the task’s training data, and out output the solution. For

few-shot learning, SNAIL(Mishra et al., 2018) takes as in-

put the support set as sequence of example-label pairs, plus

a query point, and it outputs the label for that query point.

Optimization based techniques aim to learn an opti-

mizer, which then handles the task adaptation step. In

(Ravi & Larochelle, 2017), the model is comprised of a re-

current neural network, playing the role of the optimizer,

and a convolutional neural network which does the actual

classification. Two things are learned during meta-training,

the parameters of the optimizer, and suitable shared initial-

ization for the classifier. Given the task support set as input,

the optimizer network then adapts the weights of the clas-

sifier for the task. Initialization based techniques , such as

MAML (Finn et al., 2017), strip down this approach and

only learn a suitable initialization for the classifier, the

adaptation step is then done via gradient descent.

Metric based approaches seek to embed the data into a

space where points of the same class are close together. Af-

ter the embedding, there are several ways to infer labels for

query points. Prototypical networks, as discussed in 2.1,

create a prototype for each class and then perform classi-

fication based on the distance between a query point and

the class prototypes. Relation networks (Sung et al., 2018)

perform pairwise comparisons between query and support

points. In (Satorras & Estrach, 2018) the embeddings of

the support and query sets are pushed into a graph convolu-

tional neural network which propagates labels to the query

points.

4. Experiments

In this section, we investigate the performance of our ap-

proach on two well established benchmarks on the semi-
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Model
Omniglot Mini-Imagenet

1-shot 1-shot 5-shot

PN (Ren et al., 2018) 94.62± 0.09 43.61± 0.27 59.08 ± 0.22

Our CPN: (PN + VAT) 95.66± 0.21 44.63± 0.21 64.02 ± 0.20

Our CPN: (PN + VAT + ENT) 97.14± 0.16 44.48± 0.22 66.94 ± 0.20

Our CPN (PN + RW) 97.96± 0.07 50.33± 0.27 66.99 ± 0.24

Our CPN (final:PN+RW+VAT ) 98.03± 0.11 51.03± 0.23 67.78 ± 0.20

Table 1. Ablation Study

Model
Omniglot Mini-Imagenet

1-shot 1-shot 5-shot

PNall(Snell et al., 2017) 98.8 49.4 68.2

PN(Ren et al., 2018) 94.62 ± 0.09 43.61 ± 0.27 59.08± 0.22

MetaGAN 97.58 ± 0.07 50.35 ± 0.23 64.43± 0.27

Our CPN 98.03 ± 0.11 51.03 ± 0.23 67.78± 0.20

Table 2. Semi-supervised meta-learning (without adaptation)

supervised few-shot learning setting. We start by covering

some details about datasets and the benchmarks, followed

by results and discussions.

4.1. Semi-Supervised Few-Shot Learning Benchmarks

Omniglot (Lake et al., 2011) is a dataset of 1,623 hand-

written characters from 50 alphabets. Each character was

drawn by 20 human subjects. We follow the few-shot set-

ting proposed by (Vinyals et al., 2016), in which the images

are resized to 28 28 pixels and rotations in multiples of

90◦ are applied, yielding 6,492 classes in total. These are

split into 4,112 training classes, 688 validation classes, and

1,692 testing classes.

Mini-ImageNet (Vinyals et al., 2016) is a modified version

of the ILSVRC-12 dataset (Russakovsky et al., 2015), in

which 600 images for each of 100 classes were randomly

chosen to be part of the dataset. We rely on the class split

used by (Ravi & Larochelle, 2017). These splits use 64

classes for training, 16 for validation, and 20 for test. All

images are of size 84× 84 pixels.

For all experiments, our labeled/unlabeled split follows pre-

vious works (Ren et al., 2018; Zhang et al., 2018). For Om-

niglot, we sample 10% of the points in each class to form

the labeled split, for MiniImagenet 40%. All the results

presented here are for 5-way classification.

Hyper-parameter Selection. The hyper-parameters of our

CPN approach are selected based on the performance on

the validation classes provided with Omniglot and Mini-

ImageNet datasets. The key hyper-parameters of our ap-

proach are λ and VAT ‖ǫ‖.

4.2. Ablation Study.

In order to understand the contribution of the local and

global consistency components of our approach, we did

an ablation study by training our CPN with the individ-

ual components of our semi-supervised loss, namely PN

+ LV AT and PN + LRW . This contrasts the effects of

enforcing local or global consistency. Table 1 illustrates

our ablation studies. Note that PN denotes the standard

PN trained on the labelled split of the data. In addition,

we present results for VAT coupled with a Shannon en-

tropy minimization loss, as this has been shown to boost

the performance(Miyato et al., 2018). We denote these two

variations as V AT and V AT + ENT , respectively. Note

that although the ENT encourage confident predictions

when integrated with V AT , it does not encourage smooth-

ness over the data manifold like our RW loss. This ex-

plains the advantage of integrating V AT loss with RW
loss instead of ENT loss as shown in table 1 making it

the best performing model in our results on both Ominiglot

and Mini-imagenet datasets.

All Our mini-Imagenet results are on models trained on 5-

shot episodes. Note that PN+VAT performs poorly in the

1-shot setting, when the model is trained on 5-shot, how-

ever, with 1-shot training we get a higher accuracy(46.4%).

This behavior has also been reported in (Snell et al., 2017),

so it is interesting that PN+RW and CPN perform well in

1-shot tests when trained on 5-shots. Note that all the exper-

iments in Table 1 where there are performed without using

unlabeled data at test time (no adaptation) which we study

in the following sections.
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Model
Omniglot Mini-Imagenet

1-shot 1-shot 5-shot

PN 94.62± 0.09 43.61 ± 0.27 59.08 ± 0.22

PN+ Semi-supervised inference 97.45± 0.05 49.98 ± 0.34 63.77 ± 0.20

PN+ Soft K-means 97.25± 0.10 50.09 ± 0.45 64.59 ± 0.28

PN+ Soft K-means + cluster 97.68± 0.07 49.03 ± 0.24 63.08 ± 0.18

PN+ Masked soft K-means 97.52± 0.07 50.41 ± 0.24 64.39 ± 0.24

Ours: CPN 98.03± 0.11 51.03 ± 0.23 67.78 ± 0.20

Ours: CPN + semi-supervised inference 99.30± 0.04 56.91 ± 0.25 70.11 ± 0.19

Table 3. Adaptation Experiments without distractor classes

Model
Omniglot Mini-Imagenet

1-shot 1-shot 5-shot

PN 94.62± 0.09 43.61 ± 0.27 59.08 ± 0.22

PN+ Semi-supervised inference 95.08± 0.09 47.42 ± 0.33 62.62 ± 0.24

PN+ Soft K-means 95.01± 0.09 48.70 ± 0.32 63.55 ± 0.28

PN+ Soft K-means + cluster 97.17± 0.04 48.86 ± 0.32 61.27 ± 0.24

PN+ Masked soft K-means 97.30± 0.30 49.04 ± 0.31 62.96 ± 0.14

Ours: CPN 96.44± 0.11 50.2 ± 0.23 64.1 ± 0.26

Ours: CPN + semi-supervised inference 96.76± 0.09 53.76 ± 0.23 66.17 ± 0.21

Table 4. Adaptation Experiments with distractor classes

4.3. Semi-supervised meta-learning

We evaluate the effectiveness of CPN and compare it to the

state-of-the art semi-supervised few-shot learning methods

(PN (Ren et al., 2018) and MetaGAN (Zhang et al., 2018).

CPN outperform MetaGAN(Zhang et al., 2018) in all tests,

despite having less than half the trainable parameters; as

both models use the same architecture as a discrimina-

tor/feature extractor, but MetaGAN employs an additional

generator that is larger than the discriminator. Our model

also significantly improves on the PN baseline (Ren et al.,

2018). As an upper bound, we also report the performance

of Prototypical Networks (Snell et al., 2017) where the la-

bels of the designated unlabeled set are used for training;

denoted as PNall.; see Table 2. Note that our method per-

forms closely to PNall, even outperforming it in the case of

1-shot Mini-Imagenet. The CPN results are all for models

trained on 5-shot episodes, with with the number of unla-

belled points Nu = 10.

4.4. Semi-supervised meta-learning with Adaptation

We evaluate the effectiveness of our proposed approach

where additional unlabelled data is present during test time;

also known as adaptation. Our results presented in tables 3

and 4, are from the same trained model from the previ-

ous section 4.3 but with the additional ’semi-supervised’

inference step, applied at test time. The training and test-

ing episodes are constructed exactly as in (Ren et al., 2018)

for fair comparison. At test time, the number of unla-

belled points per class Nu = 20 for Mini-imagenet and

Nu = 5 for ominiglot. The first five rows are results from

(Ren et al., 2018) in tables 3 and 4 which represents dif-

ferent adaptation techniques to exploit the additional unla-

belled points for adaptation. Soft-Kmeans model performs

a prototype refinement step as described in Section 3, dur-

ing training and testing. The semi-supervised inference

model performs that refinement during testing only. The

Soft Kmean+cluster and Masked soft Kmeans models are

models with additional components to better handle dis-

tractor classes, however they may provide benefits in the

absence of distractors. We leverage unlabled data at test

time with our approach by a simple semi-supervised infer-

ence step adapted from (Ren et al., 2018). We also tried

other variants but we found “semi-supervised inference”

both simple and effective.

Learning without distractor classes. In table 3, we can

see that CPN can leverage unlabelled data during adapta-

tion with an advantage over competing methods on both

mini-Imagenet and omniglot. For example, in the more

challenging mini-Imagenet, our performance (CPN+semi-

supervised inference) is 70.11% in the 5-shot setting, which

is 5.5% better than the runner-up method (64.59%). For

reference, we also report CPN without semi-supervised in-

ference which performs 6% lower indicating the effective-

ness of the combination of our CPN approach

Learning with distractor classes. In table 4, we evaluate

our model on a more challenging and realistic setting where

distractors labels are included (unlabeled data that does not

belong to any of the classes in the episode). For all the adap-
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tation experiments and only during test time, the number of

distractor classes Nd = 5.At training time for the distrac-

tor case, the number of unlabelled points per class Nu = 5
for Mini-imagenet and for ominiglot. We can see that even

with distractors, CPN improves significantly on the base-

line. With the additional semi-supervised inference at test

time, CPN are state-of-art on Mini-imagenet.

5. Conclusion

SS-FSL is relatively unexplored yet challenging and im-

portant task that aims learning from few-examples while

leverages unlabeled data. In this paper, we investigated the

value of local and global consistency losses to learn the the

data distribution efficiently and hence facilitate few-shot

recognition. Local consistency is achieved by promoting

the neural network prediction stability against noise with

inspiration from VAT (Miyato et al., 2018). More impor-

tantly, we proposed a global consistency random-walk loss

that encourages the data to be magnetized around the class

prototypes.

While the local consistency loss has an improvement on the

performance, we found out that our global consistency loss

significantly improves the performance in SS-FSL. Our ex-

periments and results set the state-of-the-art on most bench-

marks.
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