
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Unified Pipeline for 3D Reconstruction
from RGB-D Images

using Coloured Truncated Signed Distance Fields

Miroslava Slavcheva

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Unified Pipeline for 3D Reconstruction from RGB-D Images
using Coloured Truncated Signed Distance Fields

Einheitliche Methode zur 3D-Rekonstruktion
von RGB-D Bildern mittels Farbiger Gestutzter

Vorzeichenbehafteter Distanzfelder

Author: Miroslava Slavcheva
1st examiner: PD Dr. Slobodan Ilic
2nd examiner: Prof. Dr. Nassir Navab
Assistant advisor(s): Wadim Kehl

Thesis handed in on: Friday, February 13th, 2015

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

February 13th, 2015 Miroslava Slavcheva

Acknowledgments

This work has been a memorable journey, which would not have been possible without
the help of a number of remarkable people.

I would first like to thank Prof. Dr. Nassir Navab for providing me with the opportunity
to accomplish my thesis at the Chair of Computer Aided Medical Procedures at TUM, as
well as the industrial collaborators from Siemens CT RTC SET INT-DE for granting access
to their facilities.

Next is a tribute to the two figures who never ceased to inspire and motivate me during
the past months. My most sincere gratitude goes to Slobodan for all the support, care,
guidance and easy-going discussions. Above all, my infinite thankfulness is devoted to
Wadim for all his knowledge, advice, patience, dedicated time, provocative ways to stim-
ulate pushing the boundaries of research, and simply everything.

Thanks also to all the people at the CAMP chair for being such an aspiration through
their great work. Special credit to David for recording the sequences, to Adrian for his
assistance in the visualisations and for sharing the struggle towards thesis perfection, to
Tolga for the influential personality and encouraging pep talks, and to Fausto for being a
creative catalyst for ideas at all times.

Last but not least, I would like to mention my family, my friends, all the people who
dropped by for discussing the insignificance of life over a cup of tea and my rowing bud-
dies, who all motivated me with their smiling faces and wise words.

vii

Abstract

A complete pipeline for 3D object reconstruction is presented, including initial camera
tracking and subsequent refinement via global pose optimisation. Both stages are devel-
oped via minimisation of an objective function based on signed distance fields, generated
from RGB-D image pairs. The energy is robustified via the incorporation of geometric,
photometric and surface orientation constraints. Moreover, registration is done directly,
circumventing any correspondence search, which is a major shortcoming of ICP-like ap-
proaches. The final outcome of the pipeline is a detailed smooth 3D model.

An extensive evaluation is included, which demonstrates more accurate tracking than
state-of-the-art approaches, such as visual odometry and ICP in unconstrained set-ups.
The introduction of a multiview pose optimisation routine after the initial trajectory esti-
mation is shown to bring advantages over methods which lack posterior refinement, such
as KinectFusion. An assessment of the final meshes confirms precision limited only by the
3D grid resolution.

ix

List of Abbreviations

ADF Adaptively-sampled Distance Field
AUQ Augmented Unit Quaternion
BA Bundle Adjustment
CTSDF Coloured Truncated Signed Distance Field/ Function
DoF Degree(s) of Freedom
DVO Dense Visual Odometry
GICP Generalized-ICP
ICP Iterative Closest Point
RPE Relative Pose Error
SDF Signed Distance Field/ Function
SLAM Simultaneous Localisation and Mapping
TSDF Truncated Signed Distance Field/ Function
TV Total Variation
VIS Variational Implicit Surface

xi

xii

Contents

Acknowledgements vii

Abstract ix

List of Abbreviations xi

I. Introduction and Theory 1

1. Introduction 3
1.1. Motivation . 3
1.2. Problem Statement . 6
1.3. Outline of the Thesis . 6

2. Related Work 7
2.1. Registration . 7
2.2. Pose Optimisation . 11

3. Background 13
3.1. RGB-D Sensors . 13
3.2. Pinhole Camera Model . 16
3.3. Rigid Body Motion . 17

3.3.1. Twist Coordinates . 17
3.3.2. Augmented Unit Quaternions . 19

3.4. Signed Distance Fields . 21
3.4.1. Definition . 21
3.4.2. Generation . 22
3.4.3. Properties . 24
3.4.4. Fusion . 25

xiii

Contents

II. Proposed Method 27

4. Signed Distance Field Registration 29
4.1. Objective Function . 29
4.2. Registration Derivation for Camera Tracking 31
4.3. Global Optimisation Derivation for 3D Reconstruction 34

5. 3D Reconstruction Pipeline 35
5.1. Overview . 35
5.2. Depth Map Refinement . 36
5.3. Camera Tracking . 38
5.4. Global Pose Optimisation . 39
5.5. TV-L1 Minimisation for Final Model Generation 41

III. Results and Evaluation 45

6. Evaluation Methodology 47
6.1. Test Datasets . 47
6.2. Evaluation Metrics for Camera Tracking . 50
6.3. Evaluation Metrics for 3D Object Reconstruction 52

7. Experimental Results and Assessment 53
7.1. Synthetic Data . 53
7.2. Industrial Quality Depth Data . 64
7.3. Kinect-like Depth Data . 66
7.4. RGB-D Benchmark . 75
7.5. Features . 80

IV. Conclusion and Future Work 83

8. Summary 85
8.1. The Unified 3D Object Reconstruction Pipeline 85
8.2. Contributions . 86

9. Future Work 87

Bibliography 89

xiv

Part I.

Introduction and Theory

1

1. Introduction

Three-dimensional digitised models of real-world objects are required in many domains,
ranging from non-destructive industrial inspection and evaluation [96], robotic reasoning,
navigation and manipulation [66], interior and infrastructure design [79], surgical plan-
ning [22], art history and digital museums [49], 3D computer games and infotainment,
interactive retail, to many more. Such a broad scope of applications has naturally lead to
intensive research in the area of 3D reconstruction. Moreover, the recent advancements in
range sensing technology have facilitated a dramatic boost in the quality and performance
of these methods.

1.1. Motivation

The increased availability of inexpensive RGB-D sensors in recent years has prompted
exceptional focus on 3D object and environment modeling. Given a static scene and depth
data acquired from multiple views upon a rigid object, the camera poses (the 6 degrees
of freedom rotation and translation) in the world need to be accurately known at every
instance in order to generate the respective model. Figure 1.1 illustrates the destructive
effect that even slightly inexact poses can have on fused meshes.

Multiview setting around an object Meshed model from
accurate poses

Meshed model from
inaccurate poses

Figure 1.1.: Effect of pose accuracy on object reconstruction

Thus, the reconstruction process is usually split in several stages after the (RGB-D) data
acquisition: initial camera trajectory estimation, leading to a partial rough object recon-
struction, followed by a multiview pose optimisation, finalised by integration of the regis-
tered scans into a 3D model [4, 12]. Figure 1.2 is a schematic diagram of this process. Each
of its stages can be done in a variety of ways, which have been subject to research in the
literature for many years.

3

1. Introduction

Figure 1.2.: General workflow for 3D object reconstruction

Both the tracking and multiview refinement tasks can be considered as varieties of the
3D registration problem, whereby the relative camera transformation between two frames
is searched on the basis of best alignment of the 3D points. Among the most common
techniques is the Iterative Closest Points algorithm (ICP) [5, 10]. Although it is very effec-
tive, provided good initial alignment, and simple to implement, it suffers from a number
of drawbacks. While guaranteed to converge, it may often miss the global minimum, and
thus provide a sub-optimal solution. Moreover, it may fail when there is only partial over-
lap between the two 3D point clouds or when there is significant noise in the data. In
addition, ICP is usually very computationally expensive, as in each iteration the point cor-
respondences between the two data sets need to be determined. This matching operation
is, furthermore, another source of failures. To the present day, there are research efforts
concentrated on robustifying and improving the ICP algorithm [70], however, it still has
disadvantages.

Another common approach for the estimation of camera motion is visual odometry [61].
In its classical form, it identifies corresponding feature points in two colour images and
uses them to determine the relative movement. In addition to the inherent correspon-
dence problem, the method has the disadvantage that a large portion of the available data
is discarded, and thus not utilised further, in the keypoint selection process. Moreover,
feature detection is in itself prone to errors. This technique has been leveraged for use
in association with depth data, which achieves impressive tracking results in real time
[76, 41]. While all available depth data is used, the method still relies on the photoconsis-
tency error, which is sensitive to the quality of the colour camera, to illumination changes,
to non-Lambertian surface characteristics, and to proper alignment of the RGB and depth
sensors. Furthermore, whereas the geometric error decreases as camera parameters im-
prove, the photometric error tends to oscillate, leading to inferior convergence properties
[3].

A variety of approaches have targeted the problem from an entirely different perspec-
tive, using implicit surface representations to model the object and its environment. How-
ever, a unified pipeline, which uses a common representation for all steps of the process
has been a goal for years [13]. Claes et al. use an implicit surface model for every task,
called the VIS (variational implicit surface), however, its generation and handling seem
excessively complex. Thus, an elegant unified pipeline does not yet exist to the best of our
knowledge.

The seminal KinectFusion work [59, 36] popularised the use of signed distance fields
for the registration task. There the object is represented as a truncated signed distance
field (TSDF), which is an implicit function assigning to every point in space the distance to
its closest surface point. A global TSDF is continuously updated as new data is acquired

4

1.1. Motivation

and registered. The point clouds of incoming scans are aligned with it via a variant of
ICP. Hence, it suffers from all the characteristic ICP problems, which is a weakness of the
approach. Our goal will be to avoid any ICP-like steps in the reconstruction pipeline.

The use of SDFs for registration has been pursued by many other authors [7, 9, 46, 53]. In
all of these works, the partially generated model is represented as a continuously growing
TSDF (as in KinectFusion), and the points from new depth frames are registered to it in
order to determine the camera motion. Since tracking drift accumulates over time, the
global model might be too erroneous and lead to even bigger error in the pose estimation.
Aiming to overcome this issue, we will use frame-to-frame registration when the pose is
completely unknown.

Interestingly, the approaches by Bylow et al. [7] and Canelhas et al. [9] do not employ
ICP in the registration, but directly project the points of the incoming depth map onto the
global TSDF. This is the pursued avoidance of the matching problem. However, we will
seek a representation different than explicit point coordinates, so that the registration can
be further robustified. Moreover, these two methods still apply frame-to-model registra-
tion, which, as pointed out before, is prone to accumulation of errors.

Frame-to-frame alignment can, however, be inaccurate when there is significant noise in
the data. To compensate for such issues, various techniques for improving the pose esti-
mate from SDF registration have been proposed. Most commonly, the error function being
minimised is enhanced via additional terms. Masuda [54] incorporates surface normal
information, which can be estimated directly through the SDF itself, while Kehl et al. [39]
propose to use colour information associated with the voxels of the SDF grid. Both of these
ideas have been successfully applied in feature-based approaches as well [72], and have
demonstrated their power for improving registration.

After an initial trajectory estimation, usually a set of keyframes is selected, which are
used for range data fusion into the finalised model. Prior to this, a global refinement of
the registration between them might be performed. This can be done via more accurate
alignment, which makes use of the already determined poses as initialisation. Another
often employed technique is the representation of the multiview registration problem as
a graph optimisation task. To this end, the set of keyframes is converted into a graph in
which each pose is a node, while the transformations between the poses are the connecting
edges [17, 39]. The pose optimisation problem can then be solved via existing approaches
such as the g2o general framework for graph optimisation [47]. This, however, is an ex-
tremely expensive procedure. Our target is to avoid it by combining the model generation
by scan fusion and the multiview refinement into a single step.

To sum up, signed distance fields have proven their practicality for solving the regis-
tration problem in comparison to feature-based and explicit models, and will be the rep-
resentation of choice for this thesis. Escaping drift errors will be achieved through initial
alignment of single-frame SDFs. Subsequent refinement steps and data fusion will be com-
bined into one, leading to a multiview optimisation in which every pose is refined against
a global TSDF model. ICP will be escaped in every step, whereby the registration will
always be done directly between the voxel grids of two SDFs. Last but not least, means
for robustifying the geometric error term will be sought after, such as the addition of sur-
face orientation and photometric information. The 3D model acquisition pipeline will,
furthermore, be designed in such a way that its camera tracking and pose optimisation
components can be used as stand-alone methods.

5

1. Introduction

1.2. Problem Statement

Having identified the advantages of previous approaches, we set out the following goals
for the 3D model acquisition pipeline developed through this thesis:

• A complete pipeline, starting from the images acquired by the depth sensor, until
the rendered 3D model.

• A unified pipeline, which uses the same objective function for each step of the re-
construction process, i.e. both in camera tracking and in global pose optimisation.

• A direct method, which registers data avoiding any explicit correspondence search.

• A dense method, which uses all available depth data.

• A method which also makes use of other data readily available from RGB-D images,
i.e. colour and surface normal information.

1.3. Outline of the Thesis

The remainder of this thesis is organised as follows:

• Chapter 2 (Related Work) analyses previous work on camera tracking and 3D recon-
struction, identifying certain strengths and weaknesses which lead to the formation
of the proposed approach.

• Chapter 3 (Background) provides an overview of the required mathematical back-
ground, with a special emphasis on the theory about signed distance fields and their
properties.

• Chapter 4 (Signed Distance Field Registration) contains the main derivation of the pro-
posed unified energy and its use for registration of RGB-D images.

• Chapter 5 (3D Reconstruction Pipeline) describes the complete pipeline including op-
tional preprocessing, frame-to-frame camera tracking, global multiview pose opti-
misation and generation of a final model via TV-L1 variational minimisation.

• Chapter 6 (Evaluation Methodology) summarises the metrics used for evaluating the
proposed approach. These are applied separately on the trajectories from camera
tracking and on the 3D model produced at the end of the pipeline.

• Chapter 7 (Experimental Results and Assessment) contains the results of the proposed
method, evaluated according to the above metrics. In addition, there are compar-
isons to a variety of state-of-the-art techniques, including KinectFusion [59], visual
odometry [41] and ICP [73].

• Chapter 8 (Summary) extracts the achievements and lessons learned from this work,
and highlights its contributions.

• Chapter 9 (Future Work) suggests directions for future work with some concrete ideas
about the next steps for improving the memory footprint and speed of the pipeline.

6

2. Related Work

In this chapter related work on camera tracking and pose optimisation will be discussed.
Key weaknesses and advantages of state-of-the-art methods will be identified, aiding the
specific choice of methodology for the proposed approach.

2.1. Registration

Given point clouds obtained from different points of view upon the surface of an object,
the registration task is to place them into a common reference frame by estimating the rel-
ative rigid-body transformation between them [25, 10]. The problem is further classified
into pair-wise registration, when only two datasets are involved, and multi-view registration,
when more than two views are given. Depending on the availability of prior information,
there is registration refinement, which assumes an initial guess about the transformation,
and unconstrained registration, in which no knowledge about the setting is presumed [34].
All of these scenarios have long been subject to research in the computer vision commu-
nity.

Iterative Closest Points

Arguably the most widely spread technique for point cloud registration is the Iterative
Closest Points (ICP) method, which was developed in the early 1990s, but is being ex-
tended and improved to the present day. Almost simultaneously Besl and McKay [5]
and Chen and Medioni [10] outlined a method for matching 3D shapes, which handles
all 6 DoF of the motion, does not require processing the 3D data, is independent of the
shape representation and can cope with moderate amounts of normally distributed noise
[5]. However, their algorithms could not perform well in the presence of gross statistical
outliers and were quite costly. In addition to providing a detailed overview of existing
implementations and extensions of the original ICP, Rusinkiewicz and Levoy [70] identify
the general steps of the procedure as follows:

• point selection in one or both datasets,

• matching between the selected points,

• weighting the corresponding pairs,

• rejection of unreliable pairs,

• choice of error metric based on the point pairs,

• minimisation of the chosen error metric.

7

2. Related Work

Besl and McKay’s proposal used a point-to-point error metric between the datasets,
while Chen and Medioni used a point-to-plane measure, which is usually more robust.
Extensions to multiview settings were already outlined by Chen and Medioni as a global
view-to-model process, and followed shortly after [58, 65, 52].

Dealing with the above-mentioned problems was attempted in various ways by many
authors. Zhang [94] analyzed the distance distribution in order to derive a statistical
method for outlier rejection, making the method more robust with respect to appearing
and disappearing points, outliers, and occlusion. Fitzgibbon [25] suggested a speedup,
achieved through employing the distance transform representation.

It is important to mention that the classical ICP suggested by Besl and McKay is guar-
anteed to monotonously converge to a local minimum from any initial setting, although
this might not be the global minimum [5]. Extensions of the method, on the other hand,
often do not even have a proof of convergence to a local minimum [94]. Therefore, there is
a trade-off between the robustness and convergence properties of any ICP variant.

Notably, Johnson and Kang [37] proposed to solve the multiview registration problem
via an ICP modification, termed colour ICP, which considers not only 3D information, but
also colour. They showed that this extension makes the registration error decrease signif-
icantly, which is why we will also include photometric information in the error metrics
for the proposed approach. The last step of Johnson and Kang’s method is view integra-
tion based on a 3D occupancy grid, which stores likelihoods for the spatial distribution
of points, i.e. a representation resembling SDFs. Henry et al. [32] proposed a similar ap-
proach for RGB-D cameras, called RGBD-ICP, which additionally uses the point-to-plane
metric. Using colour has also been backed through multiple examples in Bernardini and
Rushmeier’s overview [4] of the 3D model acquisition pipeline that uses range data regis-
tration.

Similarly, Schütz et al. [72] proposed another extension of ICP, which adds not only the
surface colour as a constraint, but also the surface orientation, i.e. the consistency between
surface normal vectors. This multi-feature ICP manages to avoid errors in ambiguous cases,
in which the surface geometry is not distinguishable enough for successful application of
classical ICP. The authors show that colour and normal constraints on their own aid the
geometric error term, while all three components together give even better results.

One of the most robust ICP implementations is Segal et al. ’s Generalized-ICP [73]. It
builds on the evidenced improvement brought by the point-to-plane metric, and repre-
sents both surfaces as locally planar, thereby deriving a so called plane-to-plane metric.
The approach is allegedly more robust to incorrect correspondences, and allows for the
inclusion of probabilistic models, such as measurement noise. Since GICP is found to be
so powerful and an implementation of it is freely available in the Point Cloud Library1, we
used it extensively for comparison with our approach.

In conclusion, the ICP algorithm is general, simple and extensible. However, it has
numerous failure cases, whose handling interferes with its convergence properties. Besl
and McKay also put focus on the computational issues, whereby brute-force comparisons
between points might take up several universe lifetimes [5]. Therefore, we are aiming for
an approach which is completely ICP-free, so that it would not get stuck in local minima
and will not be excessively costly because of the computation of all explicit point matches.

1Point Cloud Library (PCL), last accessed: 2 February 2015.

8

http://pointclouds.org/

2.1. Registration

Dense Registration

Tracking for simultaneous localisation and mapping (SLAM) applications is often done on
the basis of a limited amount of sparse keypoints. The advantage thereof is the small mem-
ory footprint for storing this data. However, this approach is limited to small-scale scenar-
ios, as for example in Parallel Tracking and Mapping (PTAM) [43] or RGB-D SLAM [21]. The
performance of such approaches suffers in textureless scenes, which is why every-pixel
techniques have been proposed, like Dense Tracking and Mapping (DTAM) [60]. In it the
whole image is taken into account for alignment, which stabilises the tracking in extreme
scenarios, such as when rapid motion occurs.

Visual Odometry

Visual odometry is another commonly used approach for tracking. Originally it was based
on matching and tracking feature points over frames [61]. It owes its name to the fact that
only visual input is utilised. With the increased availability of inexpensive RGB-D sensors,
this trend changed, and the method became a dense energy-based technique, aiming to
minimise the photometric error between frames [76, 41]. In these approaches, the depth
information is utilised to determine the 3D point locations, which are then used to esti-
mate the rigid body motion which brings the two clouds into best alignment, evaluated
through their photoconsistency. There is a further extension which robustifies the method
by including loop closure detection and selects keyframes for global graph-based optimi-
sation [40]. This has been extended by Dimashova et al. [17], where the optimised energy
itself includes not only the RGB-D odometry metric, but also a point-to-plane ICP term
maximising shape consistency, and a term compensating for accumulated drift.

KinectFusion and Its Extensions

KinectFusion [59, 36] is a revolutionary approach for building smooth, dense surface mod-
els in real time using an RGB-D sensor. In it only the depth data is used for registration,
while the colour information is only utilised for display to the user. There is a global vol-
umetric model (a TSDF), which is incrementally updated, and which is used for the reg-
istration of every incoming depth frame. As a new depth map is acquired, it is converted
into a point cloud, which is then projected onto the TSDF volume. Afterwards the camera
motion is determined via a variant of ICP. The range data is subsequently integrated into
the global model using the determined pose. In the meantime, the TSDF is rendered via
ray-casting in order to obtain a noise-free vertex map, which is used for better registration
and for display to the user.

Although the approach is extremely powerful and achieves impressive results, it suf-
fers from a number of disadvantages. Firstly, the registration and integration is done in
a frame-to-model fashion and, therefore, if a wrong measurement is fused into the global
model, the tracking will be inaccurate in all subsequent frames. Moreover, a variant of
ICP is used for the point cloud to model registration, which carries all the issues described
in the preceding sections. Last but not least, there is no global refinement of the deter-
mined poses, so the drift accumulated during tracking cannot be compensated and the
final model cannot be further improved. These are the weaknesses that our approach will

9

2. Related Work

target: we will favour frame-to-frame tracking, we will not use ICP and we will employ a
refinement step after tracking.

A drawback that we will not focus on is the fact that the dense volumetric representation
occupies a lot of memory and is slow to process. This has been handled by KinectFusion
extensions which employ space partitioning approaches, such as octree representations
[91, 92]. The reduced amount of memory entails a decreased computational effort for its
handling. The original approach, as well as its modification Kintinuous [86] which targets
large-scale envoronments, execute the processing on the GPU, thereby achieving real-time
results. Due to the existence of such techniques, we will not be concerned with the memory
requirements or speed of the approach, since they can be straightforwardly incorporated
into the existing pipeline.

SDF Registration

Representing surfaces captured in range images can be done via their point clouds, as
in the previously described methods, or via implicit representations. Many authors have
demonstrated the aptness of various such models, both for solving the pairwise and the
multiview registration problems [6, 82, 34, 32, 29, 83, 31]. The representation of choice for
this thesis is, in the nature of KinectFusion, an SDF.

The theory of signed distance fields (SDFs) will be presented in a subsequent chapter
(cf. Section 3.4), while here it is sufficient to know that they are functions associating each
point in space with the signed distance to its closest surface location. Rouhani and Sappa
[68] have proven that using implicit surfaces allows for avoiding the expensive correspon-
dence search that is a drawback of ICP. They thus represent the error metric as point-to-
implicit. In this work we will further extend this notion to implicit-to-implicit registration,
where both surfaces being aligned are represented through their SDFs.

There exist two major works on the topic of registration using the SDF model: the thesis
of Kubacki [45] and its accompanying publication [46]; and the thesis of Canelhas [8],
and its associated SDF Tracker [9]. Both authors minimise the point-to-implicit error, in a
KinectFusion-like manner. A global SDF is used for registration of incoming point clouds.
While Kubacki proposes a novel ICP matching criterion and error metric based on the
properties of implicit representations, Canelhas uses the direct projection of points into
the SDF volume, thus minimising the sum of squared point-to-model distances. Due to the
properties of the volumetric representation, when there is perfect alignment, the readings
of the points in the volume will all be zero. This fact is used for the formation of a frame-to-
model error metric, which is iteratively minimised, until an estimate for the 6 DoF camera
pose is found.

The same technique is also applied by Bylow et al. [7]. The optimal camera transfor-
mation is determined via a Taylor linearisation of the objective function, leading to the
solution of an inexpensive 6 × 6 system, refined iteratively. Substituting the costly ICP
matching with this approach is therefore very advantageous, and will be employed by us
as well. However, like KinectFusion, all these methods lack a pose refinement step, which
will be tackled by us.

Paragios et al. [63] have suggested an alternative to the Taylor approximation. Instead,
the Jacobian of the registration energy with respect to the camera pose is determined, so
that a simple gradient descent approach can be carried out. Due to the fact that in the

10

2.2. Pose Optimisation

rigid body case the same motion is applied on every point in space, all voxels in the SDF
grid have the same voting weight, so they can be summed up. Thus, this is also a very
computationally cheap procedure. We will attempt both the Taylor approximation and
gradient descent minimisation for solving the unconstrained tracking problem, as well as
the pose refinement, and determine the cases when one of the methods outperforms the
other.

As mentioned in the introductory chapter, various authors have proposed the addition
of error terms in the SDF-based objective function in order to improve registration. Ma-
suda uses constraints from surface normal orientations, which is a viable improvement
provided a rough alignment of the scans [53, 54], and is therefore more suited for a pose
optimisation step. On the other hand, Kehl et al. [39] have shown the boost of multiview
fusion quality achieved by the association of colour information with the SDF. We will
aim to use both of these improvements in tracking and in pose refinement, and look for
conclusions about their applicability in the different scenarios.

2.2. Pose Optimisation

Once tracking has been accomplished, a pose optimisation step can be undertaken in order
to further improve the estimated trajectory. This is usually done in a multiview setting, so
that more information is integrated globally. If the initial error is, however, too large, all
techniques would get stuck into local minima [74].

Graph Optimisation

One possibility for the global refinement is to select a set of keyframes and convert them
into a graph structure [47]. Each keyframe camera pose is a node, while the transforma-
tions between poses are the connecting edges. The goal is then to find the tranforma-
tions which lead to the smallest global misalignment, expressed by the strongest multi-
view geometry consensus. This technique has been successfully applied by many authors
[74, 69, 17, 39]. The problem is that with an increasing number of keyframes, the number
of connections in the graph structure increases exponentially, and thus requires more time
to be optimised.

Global Optimisation

There is another direction for pose refinement, usually taken by unified approaches. They
are unified in the sense that every component of the process is based on the same energy
minimisation, however, it can be handled differently in the various stages. Ren and Reid
[67] have successfully done this with tracking and calibration, using the Jacobian energy
derivation of an objective function based on the truncated distance transform.

Claes et al. [13] have achieved this in the setting we are targeting: initial crude alignment,
followed by multiview refinement, using the same formulation for both. They, however,
use a so-called variational implicit surface (VIS) representation. Although it shares many
properties with SDFs, it requires more computations and more expensive handling. As
approaches of this nature are expected to be computationally significantly cheaper than
graph-based optimisations, we will implement such a unified pipeline based on SDFs.

11

2. Related Work

12

3. Background

This chapter summarises the required mathematical background. Starting from the basic
properties of depth images delivered by RGB-D sensors, it is then explained how they can
be projected into 3D point clouds. Next, the utilised models for representing rigid body
motion are described. Most notably, the theory of coloured truncated signed distance fields
is presented, together with two techniques for model generation by SDF fusion: weighted
averaging and variational TV-L1 energy minimisation.

3.1. RGB-D Sensors

RGB-D cameras are active depth sensors, which project a known light pattern onto a scene.
The camera observes the pattern and uses the differences to corresponding points in the
original structure, together with the known projector-to-camera transformation, to de-
termine depth. In addition, a pre-registered RGB image is delivered. This section will,
however, focus solely on depth sensing technologies and not discuss the properties of the
colour cameras.

There are two important metrics for the quality of depth sensors. First, the depth res-
olution is the minimum measurable depth difference, i.e. the smallest distance between
two depth values which can still be discerned. It is determined by the bits per pixel used
for storing the measurements of disparity of the speckles of the projected pattern [42]. As
such, the depth resolution degrades with increasing distance from the camera to the mea-
sured surface. The other characteristic is depth accuracy, which refers to the imprecision
in measuring disparity.

Two types of depth sensors have been used for the generation of evaluation sequences
for the proposed approach. Although both of them employ structured light to estimate
depth, there is a considerable difference in the fidelity of the depth maps they produce.

On the one hand, an industrial scanner, the Siemens Global Inspection System (GIS),
has been used. This is a high-end non-destructive evaluation technology, which provides
a wide variety of testing possibilities in addition to depth sensing: crack detection via ul-
trasonic vibrations and infrared imaging, hot-air thermography, flash thermography, and
resistance testing via pressure exertion [96, 23]. Its basic operational principle is demon-
strated in Figure 3.1.

As the main application of this sensor is industrial metrology, it is extremely precise.
The measurements are with a depth resolution of 0.075 mm [23], which is comparable
to what is achieved by triangulation laser rangefinders for computer vision applications1.
Moreover, both the colour and depth maps are of resolution 10.7 megapixels, which makes
up a vast amount of precise measurements. Thus, the depth data provided by this sensor
has extremely high fidelity and can be used as-is.

13-D Modeling with Laser Rangefinder, Wikipedia, last accessed: 29 January 2015.

13

http://en.wikipedia.org/wiki/Laser_rangefinder#3-D_Modeling

3. Background

Component diagram [23] Principle of operation [96]

Figure 3.1.: Siemens Global Inspection System overview

On the other hand, a Kinect-like sensor2 was used for acquiring other test sequences.
Such inexpensive, consumer-level depth cameras have a much lower accuracy, which de-
creases quadratically with distance. The manifested errors are both systematic and ran-
dom. Systematic errors are accounted for during the alignment of RGB and depth data,
done in middleware using the known mathematical principle for depth measurement and
its parameters. They can be further corrected by careful calibration techniques. Random
errors, on the other hand, should be modeled and compensated for algorithmically [42].

The Kinect has two operating range modes: default (0.8 - 4.0 m) and near (0.4 - 3.0 m,
used for the evaluation sequences in this work) [1]. It has been experimentally found that
the measurement error is already a few millimeters at the start of the range, increasing
quadratically up to about 4 cm at the maximum range [42]. More specifically, at 2.0 m
displacement, the precision is about 4.0 cm, while the depth resolution is approximately
1.2 cm [2]. Figure 3.2 displays the sensor resolution and error as a function of distance.

Depth resolution as a function of distance [2] Measurement error as a function of distance [42]

Figure 3.2.: Measurement characteristics of a Kinect-like sensor

In addition to the inferior measurement capabilities, the delivered RGB-D pairs are of
size 640×480 pixels, which is a 35 times lower resolution than that of the industrial camera.
Therefore, it is vital that the noise in the depth maps is reduced in a preprocessing step in
order to achieve reliable results. Usual smoothing techniques need to be adapted for this

2Kinect for Windows Sensor Components and Specifications, last accessed: 29 January 2015.

14

https://msdn.microsoft.com/en-us/library/jj131033.aspx

3.1. RGB-D Sensors

task, since range images exhibit different properties than colour images. The algorithmic
details of the depth refinement procedure will be explained in Section 5.2.

The differences in depth map quality are visualised in Figure 3.3. The range images are
colour-coded according to distance, with red being the closest to the camera and blue -
farthest. Purple denotes missing depth data.

GIS Synthetic Kinect

Figure 3.3.: Sensor quality comparison (top row: RGB images, bottom row: depth maps)

On the left an RGB-D image pair obtained with the Siemens Global Inspection System is
displayed. Data is acquired everywhere on the scanned object, including edges. Further-
more, the transitions between neighbouring values are smooth, with slightly more noise
noticeable along edges.

The middle images are representative of a synthetically generated dataset, in which the
image resolution is 640 × 480, i.e. the same as for the Kinect. The depth map is dense
and smooth. One can observe the similarity between the range data acquired with the
industrial sensor and the simulated sequence.

The difference with images obtained by Kinect-like sensors is striking, as shown on the
right. First, the data is very noisy everywhere and fuzzy along edges. Moreover, measure-
ments are completely missing along depth discontinuities, such as the edges of the table
and the horns of the object. The inability to acquire such fine details is a major drawback
of these devices.

To sum up, there can be significant differences between depth sensors. In order to com-
pensate for them, preprocessing will be required for the inferior devices. In addition, using
non-depth dependent terms in the objective function will be beneficial for the robustness
of registration of depth maps produced by such cameras.

15

3. Background

3.2. Pinhole Camera Model

The projection of 3D scene points onto an image plane is described by the camera model.
In this thesis, the standard pinhole camera model [30, pp. 153–158] was employed,
whereby the camera is represented as an infinitesimally small hole. Only light rays which
go through the hole and intersect the image plane get a projected point in the image. Figure
3.4 depicts this process.

Figure 3.4.: Pinhole camera model [30]

In the case of CCD cameras, the pixels might be non-square. Thus, there are two scaling
factors of the focal length f , in x- and y-direction respectively, leading to the quantities fx
and fy, the focal lengths in pixels. Further, the intersection of the principal axis with the
image plane, called the principal point, is denoted by (ox, oy) in pixel coordinates. These
characteristic features are combined into the internal camera calibration matrix K:

K =

Ö
fx 0 ox
0 fy oy
0 0 1

è
. (3.1)

Let a 3D point be denoted as X = (X,Y, Z)> ∈ R3 and its corresponding point in the
image plane be x = (x, y)> ∈ R2. Then, when represented in homogeneous coordinates3,
they are related by the equation:

x̃ = K (I3×3 03×1) ‹X. (3.2)

This is usually written as the projection relation π : R3 −→ R2, (X,Y, Z)> 7→ (x, y)>.
Therefore, to deduce 2D image coordinates given a 3D point, one has to compute:

x =
X

Z
fx + ox, y =

Y

Z
fy + oy. (3.3)

The projection can be inverted when the depth is known, leading to the inverse relation
π−1 : R3 −→ R3, (x, y, Z)> 7→ (X,Y, Z)>. It is used for calculating a point cloud out of
a depth map, which associates a depth value Z to every pixel (x, y). The explicit formulas
for the 3D coordinates are then as follows:

X =
x− ox
fx

Z, Y =
y − oy
fy

Z, Z = Z. (3.4)

The focal length and principal point can be determined via standard calibration tech-
niques [95]. It is further important to note that additional distortion parameters might be
influencing the projection, which also have to be determined [95] and corrected for before
proceeding with the images.

3From here onwards, the notation p̃ will be used to denote the homogeneous representation of any p, and p̄
for obtaining the inhomogeneous coordinates of p̃.

16

3.3. Rigid Body Motion

3.3. Rigid Body Motion

The target objects for reconstruction are rigid bodies placed in a static scene around which
a camera is moved. Alternatively, an object can be placed on a rotating turntable in front
of a fixed camera, which is an equivalent motion, provided a segmentation of the back-
ground. Since these two types of motion differ only by the selected reference frame, esti-
mating either one determines the other. In the current case the goal in registration has been
chosen to be finding the rigid body transformation of the camera between two consecutive
frames, so that a trajectory can be calculated.

Characteristic for this kind of motion is that it preserves the relative distance and ori-
entation between any pair of points on the object, thus the term rigid. All such transfor-
mations in 3D Euclidean space form the special Euclidean group SE(3) [35]. A rigid body
motion consists of a rotation and a translation and, thus, has six degrees of freedom: three
for its orientation in space, and three for its displacement from the center of the reference
coordinate system. One way to represent such a transformation is as a 4× 4 matrix,

T =

Ç
R t
0 1

å
, (3.5)

where R ∈ SO(3) is a 3 × 3 orthogonal matrix representing the rotation, and t ∈ R3 is
a vector corresponding to the translation. Because of the orthogonality of the rotational
component, the inverse of a rigid body transformation can be computed as:

T−1 =

Ç
R> −R>t
0 1

å
. (3.6)

The issue of this notation is that the matrix contains 16 elements, which must express
only 6 DoF. Therefore, other parameterisations have been sought after, with [16] giving a
detailed overview on rotation representations. Two versions have been employed for this
thesis: one with twist coordinates, and another one using unit quaternions for the rota-
tion and 3-element vectors for the translational component. In later derivations, Jacobians
of points in space with respect to camera pose will be needed, so the following sections
explain the properties of the chosen representations and calculate these Jacobians.

3.3.1. Twist Coordinates

A minimal way of representing rigid body motion is through the Lie algebra se(3) of the
SE(3) group, which has only 6 DoF [51]. A rigid body transformation is written in twist
coordinates

ξ = (u ωωω)> = (u1, u2, u3, ω1, ω2, ω3)
>, (3.7)

where ωωω ∈ R3 is the part representing the rotational component of the transformation,
while u ∈ R3 corresponds to the translation.

Next, using the generators of the algebra [18]

G1 =
á

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

ë
,G2 =

á
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

ë
,G3 =

á
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

ë
,G4 =

á
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

ë
,G5 =

á
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

ë
,G6 =

á
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

ë
, (3.8)

17

3. Background

an element of se(3) has the form

u1G1 + u2G2 + u3G3 + ω1G4 + ω2G5 + ω3G6. (3.9)

The respective transformation can be obtained as a 4× 4 matrix by exponentiation:

T(ξ) = exp
Ä
ξ̂
ä

= exp

Ç
ωωω× u
0 0

å
, (3.10)

where ωωω× is the skew-symmetric matrix corresponding to ωωω:

ωωω× =

Ö
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

è
(3.11)

and

exp(ωωω×) = I +ωωω× +
1

2!
ωωω2
× +

1

3!
ωωω3
× + · · · = I +

sin θ

θ
ωωω× +

1− cos θ

θ2
ωωω2
×. (3.12)

Substituting this back into equation 3.10 provides a closed-form expression for converting
a twist into a transformation matrix [18]:

θ =
√
ωωω>ωωω

A =
sin θ

θ
, B =

1− cos θ

θ2
, C =

1−A
θ2

R = I +Aωωω× +Bωωω2
×

V = I +Bωωω× + Cωωω2
×

T(ξ) = exp
Ä
ξ̂
ä

=

Ç
R Vu
0 1

å
=

Ç
R t
0 1

å
.

(3.13)

Calculating the twist coordinates given a transformation matrix is the inverse process,
whereby the logarithm is taken instead of the exponential [18]:

θ = arccos

Ç
tr(R)− 1

2

å
ω = ln (R) =

θ

2 sin θ

Ä
R−R>

ä
u = V−1u =

Å
I− 1

2
ωωω× +

1

θ2

Å
1− A

2B

ã
ωωω2
×

ã
t.

(3.14)

Having defined the conversion from twists to transformation matrices and vice versa,
the Jacobian of a point in 3D Euclidean space with respect to the twist which generated
it can be calculated. Let x ∈ R3 be a 3D point to which a rigid body transformation T is
applied, moving it to point y ∈ R3. In homogeneous coordinates:

ỹ = T x̃ =

Ç
R t
0 1

å
x̃. (3.15)

18

3.3. Rigid Body Motion

Using the generators of the Lie algebra and the representation from equation 3.9, the above
transformation can be rewritten as:á

y1
y2
y3
1

ë
=

Ç
R t
0 1

åá
x1
x2
x3
1

ë
= (u1G1 + u2G2 + u3G3 + ω1G4 + ω2G5 + ω3G6)

á
x1
x2
x3
1

ë
=

=

á
u1 + ω2 x3 − ω3 x2
u2 − ω1 x3 + ω3 x1
u3 + ω1 x2 − ω2 x1

0

ë
.

(3.16)

It is now straightforward to obtain the Jacobian by deriving with respect to each of the
six twist coordinates:

∂y

∂ξ
=

∂y1
∂u1

∂y1
∂u2

∂y1
∂u3

∂y1
∂ω1

∂y1
∂ω2

∂y1
∂ω3

∂y2
∂u1

∂y2
∂u2

∂y2
∂u3

∂y2
∂ω1

∂y2
∂ω2

∂y2
∂ω3

∂y3
∂u1

∂y3
∂u2

∂y3
∂u3

∂y3
∂ω1

∂y3
∂ω2

∂y3
∂ω3

=

Ö
1 0 0 0 x3 −x2
0 1 0 −x3 0 x1
0 0 1 x2 −x1 0

è
=
Ä
I −x×

ä
. (3.17)

This is an important result, which will be used in the derivation of the energy minimi-
sation scheme in later sections. To sum up, given a rigid body transformation T and a 3D

point x, if ỹ = T x̃, then the Jacobian is Jtwist(y, ξ) =
∂y

∂ξ
=
Ä
I −x×

ä
=
Ä
I −(T−1ỹ)×

ä
.

Another benefit of the Lie algebra representation is the fact that by definition it is a vector
space (with a special operation called the ”Lie bracket”) [28], and as such it is closed under
scalar multiplication. This property is essential for numerical approaches, such as gradient
descent, as it permits the multiplication with a scalar step size, guaranteeing that a rigid
body motion will be obtained, contrary to the case of general rigid body transformation
matrices where conserving the orthogonality of the rotational matrix is not promised.

3.3.2. Augmented Unit Quaternions

A general quaternion is a 4-element vector q = (qw, qx, qy, qz)
> with

adjoint: q̄ = (qw,−qx,−qy,−qz)>,

norm: ‖q‖ =
»
q2w + q2x + q2y + q2z ,

inverse: q−1 =
q̄

‖q‖
.

(3.18)

A unit quaternion is a special case of a quaternion with unity norm [16]. It is a popular
way of representing rotations in 3D Euclidean space using the following formula [19]:

R(q) =

Ö
1− 2q2y − 2q2z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1− 2q2x − 2q2z 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2x − 2q2y

è
. (3.19)

More specifically, the unit quaternion is a modification of the axis-angle representation. qw

corresponds to the angle of rotation θ: qw = cos
θ

2
, while the remaining elements represent

the normalised rotation axis r̂: (qx, qy, qz)
> = r̂ sin

θ

2
[84].

19

3. Background

Transforming a rotation matrix back to a quaternion is slightly more complex. It is done
by first deriving a solution for one of the four quaternion elements, using the fact that the
quaternion norm is unity and the rotational matrix is orthogonal. Then it is straightfor-
ward to determine the remaining three elements. Here the version where first qw is found
will be presented, while the reader is referred to [24] for the remaining options:

qw =
1

2

√
1 +R11 +R22 +R33, q =

qw

R32 −R23

4qw

R13 −R31

4qw

R21 −R12

4qw

. (3.20)

It is essential to normalise back to unit quaternions when performing any kind of opera-
tions on rotations.

For representing rigid body motion, the translational part has to be accounted for as
well. In this way, a 7-element vector λλλ ∈ R7 is formed, which will be termed the aug-
mented unit quaternion hereafter:

λλλ = (t q)> =
Ä
tx ty tz qw qx qy qz

ä>
, (3.21)

where t ∈ R3 is the translational part of the rigid body motion, while q is the unit quater-
nion corresponding to the rotation, as explained above.

Having already defined the conversions between unit quaternions and rotation matrices,
the conversions between augmented unit quaternions and 4 × 4 transformation matrices
are done in the same way, with additionally including the translation vector.

In the next step, the Jacobian of a point with respect to the augmented unit quaternion
that generated it will be calculated, as was done for twists. Again, let x ∈ R3 be a 3D point
to which a rigid body motion T is applied, transforming it into point y ∈ R3. Representing
T through its augmented unit quaternion expansion, as shown in Equation 3.19, leads to
the following relation in homogeneous coordinates:á

y1
y2
y3
1

ë
= ỹ = T(λλλ) x̃ =

Ç
R(q) t
0 1

åáx1
x2
x3
1

ë
=

á
(1− 2q2y − 2q2z)x1 + (2qxqy − 2qzqw)x2 + (2qxqz + 2qyqw)x3 + tx
(2qxqy + 2qzqw)x1 + (1− 2q2x − 2q2z)x2 + (2qyqz − 2qxqw)x3 + ty
(2qxqz − 2qyqw)x1 + (2qyqz + 2qxqw)x2 + (1− 2q2x − 2q2y)x3 + tz

1

ë
. (3.22)

It is now easy to derive the Jacobian of a point with respect to an augmented quaternion4:

JAUQ(y,λλλ) =
∂y

∂λλλ
=

∂y1
∂tx

∂y1
∂ty

∂y1
∂tz

∂y1
∂qw

∂y1
∂qx

∂y1
∂qy

∂y1
∂qz

∂y2
∂tx

∂y2
∂ty

∂y2
∂tz

∂y2
∂qw

∂y2
∂qx

∂y2
∂qy

∂y2
∂qz

∂y3
∂tx

∂y3
∂ty

∂y3
∂tz

∂y3
∂qw

∂y3
∂qx

∂y3
∂qy

∂y3
∂qz

=

=

Ö
1 0 0 −2qzx2 + 2qyx3 2qyx2 + 2qzx3 −4qyx1 + 2qxx2 + 2qwx3 −4qzx1 − 2qwx2 + 2qxx3
0 1 0 2qzx1 − 2qxx3 2qyx1 − 4qxx2 − 2qwx3 2qxx1 + 2qzx3 2qwx1 − 4qzx2 + 2qyx3
0 0 1 −2qyx1 + 2qxx2 2qzx1 + 2qwx2 − 4qxx3 −2qwx1 + 2qzx2 − 4qyx3 2qxx1 + 2qyx2

è
.

(3.23)

4A calculation of this Jacobian has been presented in [64], Table 1. However, note the difference in the
∂y2
∂qz

component: the middle value should be −4qzx2 instead of −4qxx2.

20

3.4. Signed Distance Fields

There is one other notable difference between the Lie algebra representation and aug-
mented unit quaternions, namely the scalar multiplication. The translational part of a
AUQ can, naturally, be scaled by simple multiplication. The rotation, however, is not lin-
ear and has to be interpolated. Implementationally, this is done by interpolating between
the identity quaternion qid = (1, 0, 0, 0)> and the unit quaternion that is being scaled.

There are two ways of interpolating by a factor of µ between two unit quaternions q1

and q2: lerp (linear interpolation) and slerp (spherical linear interpolation) [84]:

lerp(q1,q2, µ) = (1− µ)q1 + µq2

slerp(q1,q2, µ) =
sin ((1− t)α)

sinα
q1 +

sin (µα)

sinα
q2, α = arccosq1 · q2.

(3.24)

The disadvantage of lerp is that it results in faster movement between 20° and 160°, while
slerp provides smoother motion, but is more expensive to compute. However, the pose
updates that are handled in this work are usually less than a degree, thus, using lerp is a
sufficiently good approximation. Additionally, it is important to normalise the resulting
interpolated quaternion back to unit norm.

3.4. Signed Distance Fields

Signed distance fields (SDFs) have a broad range of applications in graphics, computer
vision and medical imaging, such as curve smoothing, detection of dominant points on
digital curves, finding convex hulls, determining object skeletons, centerlines and medial
axes, computing Dirichlet tessellations, morphing, hypertexture, scene motion, collision
detection, obstacle avoidance, and many others [88, 57, 38]. They are also useful in effi-
ciently combining information from sensors of different nature, such as sonar and stereo
[20]. In this section the concept of a signed distance field, also referred to as signed dis-
tance function5, will be presented. Moreover, various properties and approaches for fusing
SDFs generated from accurate poses will be described.

3.4.1. Definition

A signed distance function is an n-dimensional implicit function, which associates a scalar
value with each point of its n-dimensional domain [62, pp. 32–37]. As the subject is 3D
reconstruction, the focus will be on 3-dimensional SDFs, which will not be explicitly spec-
ified hereafter. Formally, the function

φ : Ω ⊆ R3 → R (3.25)

assigns to each point x ∈ R3 its signed distance to the closest object boundary point. Points
located within the object bounds have negative signed distance values, while points out-
side are assigned positive values. The interface between them is the object surface, where
the signed distance is zero. Therefore, the surface can be extracted out of such a field as its
zeroth level-set crossing via methods like marching cubes or ray-tracing [27].

5The term signed distance function will be avoided when referring to the digital implementation, because there
the representation is discrete and the actual function is not known. What is being dealt with is a 3D voxel
grid of scalar values, which is better reflected by the term field.

21

3. Background

SDFs have numerous advantages over other representations. They not only represent
the object boundaries, like boundary representations, but also its interior and its surround-
ing volume. Moreover, they provide a means to inexpensively compute any offset surface
by simply changing the extracted iso-surface value [27].

Unfortunately, implicit functions are very costly to compute [27]. This is why they are
usually represented as discrete volumes, subdivided into voxels. For this thesis, the vox-
els were cubical, but any other shape can be chosen. As the voxel size approaches zero,
it approximates a point better and better, and therefore becomes closer to the actual dis-
tance function. However, the available memory is a limiting factor for the choice of voxel
dimensions and, consequently, for the quality of the approximation that the discrete grid
provides for the underlying SDF.

3.4.2. Generation

There are two common ways in which the voxel grid of an SDF can be generated:

• Cast a ray from the camera center through each pixel of the range image, and cal-
culate the difference between the surface point (whose coordinates are obtained via
Equation 3.4) and the value at the depth map pixel (obtained via Equation 3.3) [14].

• Project each voxel center onto the depth map (using Equation 3.3), then convert the
calculated pixel coordinates into a 3D point (using Equation 3.4) and find its distance
to the voxel center [90].

The advantage of the ray-casting approach is that each pixel is accessed only once. How-
ever, the obtained values then have to be assigned to voxels discretised according to the
projected 3D points. Depending on the volume size, this might be excessively expensive.
Therefore, we chose the second option for our implementation. In it every voxel is accessed
only once and we have control over the memory consumption by choosing an appropriate
voxel resolution. In addition, in this way a colour value can be assigned to each voxel, by
simply reading the RGB value of the projected pixel from the colour image. Notably, this
value is accurate only for voxels which coincide with the object surface, while for the other
voxels this is the colour on the ray to the camera center.

Additionally to the signed distances, a binary weight is assigned to each voxel, signi-
fying the level of confidence about its value. In this sense, voxels which have not been
observed receive a weight of 0, whereas the rest have weight 1. In addition, a thin layer of
thickness η > 0 behind the surface, denoting how solid the object is expected to be, also
gets confidence 1.

For numerical stability, i.e. avoiding mixtures of very far and very near values, and since
we are interested in the exact values only near the surface, the signed distances are scaled
by a factor δ > 0, which controls the dimension of the near-surface region, and truncated
into the interval [−1, 1].

Thus in addition to the distance field φ, a coloured truncated signed distance field has an
associated weight field ω and an associated colour grid ζ. The equations below summarise
the whole CTSDF generation process for any voxel center x = (x, y, z)> ∈ R3 (D denotes
a range image, while I is the corresponding colour image), while Figure 3.5 visualises the

22

3.4. Signed Distance Fields

truncation and weighting steps. Note that for brevity from here onwards, the term SDF
will be used for referring to a CTSDF, unless otherwise specified in the context.

φnon−truncated(x) = D(π(x))− z

φ(x) =

sgn(φ(x)) , if |φ(x)| ≥ δ
φ(x)

δ
, otherwise

ω(x) =

{
1 , if φnon−truncated(x) > −η
0 , otherwise

ζ(x) = I(π(x))

(3.26)

Figure 3.5.: TSDF generation [90]

Figure 3.6 shows several vertical cross-sections through the distance field of a synthetic
depth map. The teddy has dimensions approximately 25 × 30 × 35 cm. Therefore the
following parameters were selected: voxel size of 2 mm, δ: 2 mm and η: 1 cm. Blue
corresponds to a signed distance of -1, i.e. inside the object, red - to distance 1, i.e. outside
the object. The remaining colours are interpolated between these values. There is always
only a very thin band around the object boundary where the values are different from ±1.

Figure 3.6.: Cross-sections through a CTSDF

23

3. Background

3.4.3. Properties

The most important SDF property that we will make use of is the fact that its gradient at
any surface location equals the unit surface normal at that point [62, 38]:

‖∇xφ(x)‖ = ‖n(x)‖ = 1, ∀x ∈ ∂Ω. (3.27)

Intuitively, since the distance is a Euclidean measure, moving twice as close to the sur-
face from a given point in space gives a signed distance value which is two times smaller,
and thus the unity norm is preserved [62]. This relation is, however, not defined at points
which are equally distant from more than one surface location, such as the center of a
sphere. In such cases the gradient is undefined [38].

When handling this equation in a discrete setting, the gradient is calculated using a nu-
merical scheme, such as central differences, and is, therefore, defined everywhere. How-
ever, because of loss of accuracy in the initial discretisation step, the norm might not be
unity any more [62]. Thus, it has to be normalised in numerical implementations. Let
x = (x, y, z)> be a 3D point representing the center of a voxel in the discretised grid. Then,
the normal is calculated via the formula

n(x) =

Ç
∂φ(x)

∂x
,
∂φ(x)

∂y
,
∂φ(x)

∂z

å>
=

=
Ç
φ(x+ 1, y, z)− φ(x− 1, y, z)

∆x
,
φ(x, y + 1, z)− φ(x, y − 1, z)

∆y
,
φ(x, y, z + 1)− φ(x, y, z − 1)

∆z

å> (3.28)

and the SDF spatial gradient becomes

∇xφ(x) = n(x) =
n(x)

‖n(x)‖
. (3.29)

Another important SDF property is its viewpoint independence. However, this is the
case only for SDFs representing the whole object, i.e. when the multiple viewpoints are
fused. When dealing with single-frame SDFs the voxels behind the surface are never
seen, leading to the formation of viewpoint-dependent protrusions, as shown in Figure
3.7. Thus, these artefacts must be avoided in frame-to-frame registration. This is easily
achieved thanks to the binary weights: since voxels behind the object are not observed,
they have a weight of 0. So in registration, only voxels with non-zero weight can be taken
into account.

In addition, the gradient at these locations is faulty and must not be used. Since the
protrusions are always transitions between signed distance values of 1 and -1, an imple-
mentation that uses central differences for the gradient must simply discard voxels where
any element of the gradient has an absolute value of 1.

Figure 3.7.: Formation of view-dependent protrusions in the generation of single-frame SDFs

24

3.4. Signed Distance Fields

3.4.4. Fusion

Once the camera poses have been accurately estimated, the separate depth measurements
can be fused through their SDFs. The result is a view-independent implicit surface rep-
resentation in a voxel grid, which can be meshed and rendered using the marching cubes
method [50]. Associated colour is assigned from the RGB grid of the CTSDF.

Coloured Weighted Average

The most commonly used SDF fusion method was proposed by Curless and Levoy [14]. It
is a simple weighted average, which can be formed incrementally as new measurements
are integrated into the model. Let us denote this rolling weighted average at time step t by
Φt and its associated weight field by Wt. Then the following formulas describe the update:

Φt+1(x) =
Wt(x)Φt(x) + ωt+1(x)φt+1(x)

Wt(x) + ωt+1(x)

Wt+1(x) = Wt(x) + ωt+1(x).

(3.30)

If all the SDFs are available, the weighted average can be calculated as:

φ(x) =

∑
i∈{1,...,#SDFs}

ωi(x)φi(x)

∑
i∈{1,...,#SDFs}

ωi(x)
, ω(x) =

∑
i∈{1,...,#SDFs}

ωi(x)

#SDFs
. (3.31)

It may turn out that certain voxels have not been seen from any viewpoint, so their
cumulative weight is zero. This is likely to happen only with voxels which are inside the
object. Therefore, for implementational purposes their signed distance is directly set to -1
and division by zero is avoided.

The result so far is a TSDF, which can be meshed and rendered. Colour information can
be easily added using the RGB field, as suggested by Bylow et al. [7]. There is a rolling av-
erage for each of the three colour channels. The weights are, however, assigned according
to the cosine of the angle θ between the line of sight and the surface normal at the given
location, in a combination with the weight of the voxel itself. In this way larger certainty
is given to colours of points whose normal is pointing towards the camera. The equations
below summarise this procedure, with R, G and B representing the three colour voxel
grids, and WC - the associated colour weight grid. The equivalent formula given all SDFs
is straightforward to derive in the same way as Equation 3.31.

wct+1(x) = wt+1(x) cos(θt+1(x))

Rt+1(x) =
WC
t (x)Rt(x) + wct+1(x)rt+1(x)

WC
t (x) + wct+1(x)

Gt+1(x) =
WC
t (x)Gt(x) + wct+1(x)gt+1(x)

WC
t (x) + wct+1(x)

Bt+1(x) =
WC
t (x)Bt(x) + wct+1(x)bt+1(x)

WC
t (x) + wct+1(x)

.

(3.32)

25

3. Background

TV-L1 Minimisation

Although the weighted average is simple and cheap to compute, it does not always pro-
duce sufficiently smooth models. To overcome this issue Zach et al. [90] proposed a TV-L1

variational energy optimisation framework. It combines an L1-norm geometrical data fi-
delity term, minimising differences between per-voxel signed distances, and a total varia-
tion spatial regularisation term, which ensures that the resulting model is smooth. Schroers
et al. [71] improve this method by introducing a normalisation factor ε, which prevents
over-smoothing. Further, Kehl et al. [39] achieved even better geometrical fidelity by in-
cluding a regulariser based on colour consistency of the CTSDFs. This is the method of
choice for our final model generation. It is speeded-up by using the weighted average,
explained in the previous section, as an initialisation.

Given n CTSDFs, the energy being minimised is as follows:

E(φ, ζ) =
∑

x∈voxels
(D(φ1..n, ω1..n, ζ1..n, φ, ζ) + wgeomS(∇φ) + wcolourS(∇ζ))

S(∇u) = |∇u|

D(φ1..n, ω1..n, ζ1..n, φ, ζ) =
1

ε+
∑

i∈SDFs
ωi

(∑
i∈SDFs

ωi(|φ− φi|+ |ζ − ζi|)
)
,

(3.33)

and the solutions for the optimal signed distance field φ and colour field ζ are the steady
states of the following gradient descent equations [39]:

∂φ = wgeomdiv(S′(∇φ))− ∂D

∂φ
(φ1..n, ω1..n, ζ1..n, φ, ζ)

∂ζ = wcolourdiv(S′(∇ζ))− ∂D

∂ζ
(φ1..n, ω1..n, ζ1..n, φ, ζ).

(3.34)

The weight factors of the regularisers wgeom and wcolour have to be carefully chosen, so
that fine geometrical details are not degraded by over-smoothing. At the end of this step,
a highly detailed, finely coloured 3D model is obtained. Figure 3.8 shows the difference
between a coloured weighted average from 12 views and its corresponding smooth model
after 20 iterations of TV-L1 minimisation. Note the improvement on fine details, such as
the horns.

Figure 3.8.: Coloured weighted average (left) versus its corresponding TV-L1 minimised model (right)

26

Part II.

Proposed Method

27

4. Signed Distance Field Registration

This chapter presents the CTSDF-based registration. First, the objective function including
geometric, colour and surface orientation constraints is stated. Then, its application for the
two pipeline stages, camera tracking and pose optimisation, is derived. Certain important
implementational aspects are also highlighted.

4.1. Objective Function

The representation of choice for the proposed method is the coloured truncated signed dis-
tance field, as described in the preceding chapters. As our goal is a direct dense approach,
we will always estimate motion directly using the per-voxel differences of the 3D grids
of two SDFs. We will additionally incorporate colour and normal information for surface
locations. The equations below summarise the separate energy components:

Egeometric(ξ) =
1

2

∑
v∈voxels

(φreference(v)− (φcurrent(ξ))(v))2 (4.1)

Ecolour(ξ) =
1

2

∑
v∈surface

voxels

(ζreference(v)− (ζcurrent(ξ))(v))2 (4.2)

Enormals(ξ) =
∑

v∈surface

voxels

(1− nreference(v) · (ncurrent(ξ))(v)) (4.3)

Here ξ is the 6 DoF pose that is being estimated, and denotes either the twist or the aug-
mented unit quaternion representation, as described in the section on rigid body transfor-
mations (cf. Section 3.3). φ is the signed distance field, ζ is its associated colour field, and n
is the field of unit normals, which equals the spatial gradient of the SDF (cf. Section 3.4.3).
When ξ is applied to these grids as φ(ξ), ζ(ξ) and n(ξ), it represents the current CTSDF
generated from the respective pose. When not specified, this is zero translation and iden-
tity rotation, i.e. φ,ζ and n denote a fixed reference CTSDF, which is the model to which the
current one is aligned. Summation is done over voxels because the same transformation is
applied to the whole grid.

The geometric component stems from the fact that given perfect alignment of the grids,
they will have the same values at every voxel. The photometric term enforces that the
surface colours of overlapping voxels must be the same when they are properly aligned.
Therefore minimising the per-voxel sum of squared differences is optimal.

Similarly, the normal vector component reflects the fact that registered surfaces have
the same orientation. There is one notable difference. While the distance and colour fields
are scalar (when colour is represented as intensity or is split into its red, green and blue
channels), the normals are vector quantities. Apart from the entailed implementational
adjustments, the energy is also modified. The dot product of two unit vectors is a measure

29

4. Signed Distance Field Registration

of the cosine of the angle between them. It is one for vectors pointing in the same direction,
and zero for perpendicular vectors. Therefore, when the SDFs are aligned, the dot product
will be maximised. In order to include the term in the minimisation schemes, one (the
largest possible unit vector dot product value) minus the dot product is taken. This is
a more complex expression than the straightforward differences in Equations 4.1 and 4.2,
however, it better reflects the properties of vector fields. It is possible to use a simple vector
difference instead of the dot product, as was done by Masuda [53], but we expect that the
dot product is a more robust measure.

Combining these terms yields the complete objective function definition:

ECTSDF (ξ) = Egeometric(ξ) + wcolourEcolour(ξ) + wnormalsEnormals(ξ), (4.4)

where wcolour and wnormals are weights controlling the influence attributed to the respec-
tive error terms. The optimal solution ξ∗ is the rigid-body transformation that best aligns
the two CTSDFs, i.e. which minimises their per-voxel difference:

ξ∗ = argmin
ξ

ECTSDF (ξ). (4.5)

The numerical scheme for solving this energy will be derived in the following sections.
Inspired from the related work, two optimisation schemes will be used: first-order Taylor
linearisation and gradient descent. Each of them can be applied for solving the pairwise
registration in the camera tracking setting and the multiview registration in the global
pose optimisation scenario. We have experimentally found that the Taylor approach is
more suitable in the absence of an initial pose estimate, as in frame-to-frame tracking,
while the gradient descent scheme is more efficient in the multiview global optimisation,
where approximate poses are already known. This is why each of the derivations will be
described in its more relevant scenario. However, both schemes are generally applicable
for both registration cases.

Implementation Note

In the case when single-frame CTSDFs are used, they exhibit the view-dependent pro-
trusions that were described earlier (cf. Figure 3.7). This is why the binary weights need
to be taken into account when working with this energy, modifying the formulas in the
following way:
Eweighted geometric(ξ) =

1

2

∑
v∈voxels

(φreference(v)ω(v)− (φcurrent(ξ))(v) (ω(ξ))(v))2 (4.6)

Eweighted colour(ξ) =
1

2

∑
v∈surface

voxels

(ζreference(v)ω(v)− (ζcurrent(ξ))(v) (ω(ξ))(v))2 (4.7)

Eweighted normals(ξ) =
∑

v∈surface

voxels

(1− (nreference(v)ω(v)) · ((ncurrent(ξ))(v) (ω(ξ))(v))) (4.8)

This, however, is an overload of the notation, which is very simple to implement. All that
needs to be done is a straightforward multiplication of the distance, colour and normal
fields with the grid of weights. Therefore, we will omit the binary weight factors in the
following derivations, so that the focus is on the more essential aspects. We will also
eliminate the voxel v from the formulas, because all operations are applied on all voxels,
and thus mentioning v does not bring additional information.

30

4.2. Registration Derivation for Camera Tracking

4.2. Registration Derivation for Camera Tracking

For simplicity of notation, we will derive each of the three energy components separately.
They are then combined straightforwardly via the weights wcolour and wnormals.

Geometric Component

Let us view the signed distance field φ as a function of the pose ξ from which it was gener-
ated. Let∇xφ denote the spatial gradient of a signed distance field, and∇ξφ be its Jacobian
with respect to the pose ξ, which can be represented by a twist or by an AUQ. It can be
derived as follows using the chain rule:

∇ξφ =
dφ

dξ
=

dφ

dv

dv

dξ
= ∇xφ J(v, ξ). (4.9)

Depending on the choice of pose representation ∇ξφ ∈ R1×6 for twists or ∇ξφ ∈ R1×7 for
AUQs.

We represent the distance field by its first-order Taylor approximation around the cur-
rent pose estimate ξ(k):

φ(ξ) = φ
Ä
ξ(k)
ä

+∇ξφ
Ä
ξ(k)
ä Ä
ξ − ξ(k)

ä
= φ
Ä
ξ(k)
ä
−∇ξφ

Ä
ξ(k)
ä
ξ(k) +∇ξφ

Ä
ξ(k)
ä
ξ. (4.10)

Substituting this into Equation 4.1 leads to the following expression, in which the terms
dependent on ξ are written in a different colour than the free ones:

Egeometric(ξ) =
1

2

∑
voxels

(φref − φcurr (ξ))2 =

=
1

2

∑
voxels

Ä
φref − φcurr

Ä
ξ(k)
ä

+∇ξφcurr
Ä
ξ(k)
ä
ξ(k) −∇ξφcurr

Ä
ξ(k)
ä
ξ
ä
2 =

=
1

2

∑
voxels

ÇÄ
φref − φcurr

Ä
ξ(k)
ä

+∇ξφcurr
Ä
ξ(k)
ä
ξ(k)
ä
2+

+ ξ>∇>ξ φcurr
Ä
ξ(k)
ä
∇ξφcurr

Ä
ξ(k)
ä
ξ−

− 2
Ä
φref − φcurr

Ä
ξ(k)
ä

+∇ξφcurr
Ä
ξ(k)
ä
ξ(k)
ä
∇ξφcurr

Ä
ξ(k)
ä
ξ

å
.

(4.11)

We are looking for the value of ξ that minimises the energy, therefore we need the solu-
tion for which the derivative with respect to pose is zero. Deriving the energy with respect
to the pose is done as follows:

dEgeometric
dξ

=
1

2

∑
voxels

Ç
0 + 2∇>ξ φcurr

Ä
ξ(k)
ä
∇ξφcurr

Ä
ξ(k)
ä
ξ−

− 2
Ä
φref − φcurr

Ä
ξ(k)
ä

+∇ξφcurr
Ä
ξ(k)
ä
ξ(k)
ä
∇>ξ φcurr

Ä
ξ(k)
äå

=

=
∑

voxels

Ç
∇>ξ φcurr

Ä
ξ(k)
ä
∇ξφcurr

Ä
ξ(k)
ä
ξ−

−
Ä
φref − φcurr

Ä
ξ(k)
ä

+∇ξφcurr
Ä
ξ(k)
ä
ξ(k)
ä
∇>ξ φcurr

Ä
ξ(k)
äå

.

(4.12)

31

4. Signed Distance Field Registration

This is a very convenient representation, because it can be easily transformed into a
linear system:

A =
∑

voxels

Ç
∇>ξ φcurr

Ä
ξ(k)
ä
∇ξφcurr

Ä
ξ(k)
äå

b =
∑

voxels

ÇÄ
φref − φcurr

Ä
ξ(k)
ä

+∇ξφcurr
Ä
ξ(k)
ä
ξ(k)
ä
∇>ξ φcurr

Ä
ξ(k)
äå

dEgeometric
dξ

= A ξ − b

⇒ ξ∗ = A−1 b

(4.13)

The optimal solution ξ∗ is very cheap to compute, since A ∈ R6×6, b ∈ R6×1 for twists or
A ∈ R7×7, b ∈ R7×1 for AUQs, and thus the matrix inverse is an inexpensive operation
in this case.

We have found that for reasons of numerical stability, it is better to iteratively take steps
towards the optimal solution ξ∗ from the current one ξ(k) as follows:

ξ(k+1) = ξk + β
Ä
ξ∗ − ξ(k)

ä
, (4.14)

where β is the chosen step size. This neat formula concludes the derivation of the geomet-
ric component of signed distance field registration for camera tracking.

Colour Component

The colour grid ζ of a CTSDF can be split into three scalar fields, one for its red, green and
blue channel. Exactly the same derivation as for the distance field can be applied to each
of these grids. Thus, we will not explicitly write the formulas again. Because the complete
objective function (Equation 4.4) is a simple weighted summation of the error terms, it is
only needed to add the derived Acolour and bcolour to A and b respectively.

Normal Vector Component

As the grid of unit normals is a vector field, the above formulas need to be slightly mod-
ified in order to include the surface orientation constraints. First, we carry out a similar
Taylor approximation step for the grid of surface normals:

n(ξ) = n
Ä
ξ(k)
ä

+∇ξn
Ä
ξ(k)
ä Ä
ξ − ξ(k)

ä
= n

Ä
ξ(k)
ä
−∇ξn

Ä
ξ(k)
ä
ξ(k) +∇ξn

Ä
ξ(k)
ä
ξ. (4.15)

Here∇ξn
Ä
ξ(k)
ä

(of dimension 3× 6 or 3× 7, depending on the pose representation) is the
Jacobian of a normal with respect to pose, which can again be found by an application of
the chain rule:

∇ξn =
dn

dξ
=

dn

dv

dv

dξ
= ∇xn J(v, ξ). (4.16)

The term ∇xn ∈ R3×3 is the spatial gradient of a normal vector, which evaluates how
the orientation changes with location, i.e. it is a measure of curvature:

∇xn =

Ö
∂nx/∂x ∂nx/∂y ∂nx/∂z
∂ny/∂x ∂ny/∂y ∂ny/∂z
∂nz/∂x ∂nz/∂y ∂nz/∂z

è
=

Å
∂n

∂x

∂n

∂y

∂n

∂z

ã
. (4.17)

32

4.2. Registration Derivation for Camera Tracking

Now the same procedure follows, whereby we substitute the Taylor approximation into
the original energy component (Equation 4.3), and then derive with respect to the pose:

Enormals(ξ) =
∑

surface

voxels

(1− nref · ncurr(ξ)) =

=
∑

surface

voxels

Ç
1− nref ·

Ä
ncurr

Ä
ξ(k)
ä
−∇ξncurr

Ä
ξ(k)
ä
ξ(k) +∇ξncurr

Ä
ξ(k)
ä
ξ
ä å

.
(4.18)

Next, we apply the product rule in order to obtain the derivative of a dot product
(a · b)′ = a′ · b + a · b′ with respect to each component j of the pose vector:

dEnormals
dξj

=
∑

surface

voxels

Ç
0− nref ·

Ä
∇ξncurr

Ä
ξ(k)
ä ä
δj

å
=

=
∑

surface

voxels

− nref ·
Ç
∇xncurr

Ä
ξ(k)
ä
J(v, ξ(k)) δj

å
,

(4.19)

where δj is a 6 × 1 or 7 × 1 vector of zeros, with jth component equal to 1, which enforces
that the dot product is between two 3-element vectors. The full derivative dEnormals/dξ is
obtained by stacking the separate j-components.

We observe that the expression above does not depend on ξ, which is expected, since
normals only influence through the change of their orientation and not of their location.
Thus, the normal vector error term only contributes to the vector b in the linear system
from Equation 4.13. A disadvantage of this formulation is that no equation system could
be build only from normal vector constraints, since the matrix A would be undefined,
which was not the case for the colour constraints. However, Enormals can be used to sta-
bilise any energy that can be derived into a linear system of the form of Equation 4.13.
Moreover, since the normal vector field is the gradient of the signed distance field, the
same derivation can be obtained via a second-order Taylor approximation of the geometric
energy component, which would lead to a fusion of the geometric and surface orientation
constraints.

With this the derivation of all objective function terms is concluded and they can be
combined in order to yield a robust pose estimate given no prior knowledge of the trans-
formation between frames.

33

4. Signed Distance Field Registration

4.3. Global Optimisation Derivation for 3D Reconstruction

Having derived many of the involved derivatives and Jacobians, it is now easy to present
the gradient descent derivation based on a direct derivative with respect to pose:

ξ(k+1) = ξ(k) − α∇ECTSDF (ξ(k)) = ξ(k) − αdECTSDF
dξ(k)

, (4.20)

where α is the iteration step size.

Geometric and Colour Components

As we have seen, the derivation concerning scalar fields is the same, so the geometric and
colour terms will be explained together below, using the distance field as an example:

dEgeometric
dξ

=
1

2

∑
voxels

2 (φref − φcurr (ξ))
d (−φcurr(ξ))

dξ
=

=
∑

voxels

(φcurr (ξ)− φref)
dφcurr(ξ)

dξ
=

=
∑

voxels

(φcurr (ξ)− φref)
dφcurr(ξ)

dv

dv

dξ
=

=
∑

voxels

(φcurr (ξ)− φref)∇xφcurr(ξ) J(v, ξ) =

=
∑

voxels

(φcurr (ξ)− φref)∇ξφcurr(ξ).

(4.21)

Hence, we obtain an elegant formula for the gradient descent step:

ξ(k+1) = ξ(k) − α
∑

voxels

Ä
φcurr

Ä
ξ(k)
ä
− φref

ä
∇ξφcurr

Ä
ξ(k)
ä

(4.22)

Normal Vector Component

The derivative of the surface orientation error term yields exactly the same result as in the
Taylor expansion case. Here it is easier to perceive the derivation, so we present it again:

dEnormals
dξj

=
∑

surface

voxels

− dnref
dξj

· ncurr(ξ)− nref ·
dncurr(ξ)

dξj
=

=
∑

surface

voxels

− nref ·
dncurr(ξ)

dξj
=

∑
surface

voxels

− nref ·
Ç

dncurr(ξ)

dv

dv

dξj

å
=

=
∑

surface

voxels

− nref ·
Ä

dncurr(ξ)

dv

dv

dξ

dξ

dξj

ä
=

∑
surface

voxels

− nref ·
Ç
∇xncurr(ξ) J(v, ξ) δj

å
.

(4.23)

Having determined all components, they can be combined by weighted summation in
order to iteratively refine the camera pose.

34

5. 3D Reconstruction Pipeline

This chapter presents the way the two registration components, derived in Chapter 4, come
together to produce a tracked camera trajectory and, subsequently, a refined 3D model.
In addition, the preprocessing operations on colour and depth data are explained. The
employed ways of model generation are also outlined.

5.1. Overview

The introductory chapter presented the general components of a 3D reconstruction system
in Figure 1.2, identifying the two major stages: camera tracking via coarse registration, and
global pose optimisation via refinement of the alignment. However, there exist numerous
possibilities for the exact methodology of each one of them. Moreover, these components
need to be connected to each other and to interact with the sensor and the output device.
These details, together with the goals set out at the start of the thesis (cf. section 1.2), lead
to the development of the pipeline depicted in Figure 5.1.

Figure 5.1.: Unified Pipeline for 3D Object Reconstruction

The proposed unified pipeline consists of four stages, which will be further explained in
the remaining sections of this chapter:

• Data Acquisition: Interface between the images produced by the depth sensor and
the associated colour camera, and the reconstruction system. Depending on the type
of device, preprocessing for noise removal from the range data might be applied.

• Camera Tracking: Generating a camera trajectory using frame-to-frame registration
based on the optimisation method described in Section 4.2. The pipeline so far can
be used as a stand-alone component for camera tracking.

• Pose Optimisation: Refining the poses of a selected set of keyframes from the tracked
trajectory using frame-to-model registration as outlined in Section 4.3. The global
model is a weighted average of the keyframes’ SDFs, which can be rendered as a 3D
model, however, of a lower quality than the one obtained at the end of the pipeline.

• Data Fusion: Generation of a smooth model via TV-L1 minimisation.

35

5. 3D Reconstruction Pipeline

5.2. Depth Map Refinement

As mentioned in the background section on RGB-D cameras (cf. Section 3.1), although in-
dustrial structured light depth sensors, such as the Siemens Global Inspection System, pro-
vide extremely precise measurements, consumer-level devices, like the Microsoft Kinect,
have a much lower accuracy, which decreases quadratically with distance.

Figure 3.2 testified that preprocessing and noise reduction will be beneficial when work-
ing with depth images produced by Kinect-like depth sensors. As the values become ex-
tremely unreliable with increasing distance, it is advisory to use a cutoff limit, after which
the sensor readings are considered unreliable [77]. For the Kinect sequences presented in
the evaluation section, this limit was set to 2 m. This, however, is not a major factor, since
the objects of interest usually occupied a region of space closer than this threshold.

The cutoff procedure is, nonetheless, not sufficient, as there are random errors in the
remaining depth map regions. One option to tackle this problem is classical noise removal
using edge-preserving filters, such as the bilateral filter [80]. This technique is employed in
the original KinectFusion approach [59]. Although it keeps depth discontinuities thanks to
its range and low-pass domain components, which take into account the photometric and
geometric similarity between pixels respectively, it does not account for the registration
errors between colour and depth images outputted by RGB-D sensors. These errors mean
that there is a slight misalignment between the edge positions in the colour and depth
maps, which would result in incorrectly assigned RGB values on subsequently produced
point clouds and 3D meshes. In addition, structured light sensors often fail to deliver a
reading at depth discontinuities, such as edges, leading to holes in the depth maps (cf. the
regions marked in purple in Figure 3.3). Consequently, research efforts have been target-
ing these problems by using joint bilateral filters, which apply the depth map smoothing
steered by a weight field, calculated on basis of the colour image [55, 56, 11]. These meth-
ods lead to very high quality results, but usually consist of many complex stages, which
take significant computational time. The work by Le et al. [48] produces one of the most
compelling results and provides an extensive comparison with similar approaches.

The depth refinement method chosen for this thesis is also among the ones that make
use of the colour image as support. It is a modification of the work by Vijayanagar et
al. [85], which iteratively aligns the edges from the depth map with those from the colour
map, using anisotropic diffusion with conduction coefficients based on the RGB values. It is based
on a coarse-to-fine hierarchy, at the lowest resolution of which the missing data from the
original depth map is recovered.

In short, their proposed approach creates a downsampled pyramid of the colour and
depth image pair. An associated mask is determined at each level, indicating the depth
map holes, edges and near-edge pixels, since these are unreliable values. Holes in the
depth map are filled at the coarsest pyramid resolution only, using simple neighborhood
averaging. Next, the pyramid is processed and upsampled in the reverse direction until a
depth map of the original size is obtained. This processing is the actual anisotropic diffu-
sion step, whereby conduction coefficients are calculated from the colour image, based on
the similarity between neighboring pixels. The new depth value for each pixel is a sum of
its old value and the values of its neighbors, weighted according to the conduction coeffi-
cients. Finally, the values are adjusted so that the newly produced quantities are from the
set of initially existing depth values.

36

5.2. Depth Map Refinement

Algorithm 1: Depth Map Refinement Algorithm
Inputs : raw depth map D (size w × h)

colour image I (size w × h)
Output : refined depth map ‹D (size w × h)
Additional parameters: number of pyramid levels pyramid levels

number of anisotropic diffusion iterations per level ad iters

// construct the pyramid
for level← 1 to pyramid levels do

Dlevel ← downsample Dlevel−1 by a factor of 2
Mlevel ←mask for the holes and Laplacian-detected edges of Dlevel

Ilevel ← downsample Ilevel−1 by a factor of 2
end

// optionally close holes‹Dpyramid levels ← hole-filled Dpyramid levels

// anisotropic diffusion upsampling
for level← pyramid levels to 1 do

compute conduction coefficients from Ilevel‹Dlevel ← execute ad iters rounds of anisotropic diffusion
Dlevel−1 ← joint bilateral upsampling by a factor of 2 on ‹Dlevel and Ilevel

end

The reader is referred to the original paper for a detailed description of the separate
stages, while Algorithm 1 gives an overview of the procedure implemented in this work.
We introduced several notable modifications. Most importantly, although performing all
the outlined steps leads to visually impressive results, there is a risk that the new values
might cause more inaccuracies in subsequent handling of the depth maps for SDF creation.
This is especially dangerous in the hole-filled regions. Thus, in order not to create any false
data, we propose to either completely omit the hole filling step, or to execute only one iter-
ation thereof, whereby only the outermost pixels at the contour of hole regions are filled.
The other notable modification is the replacement of the upsampling followed by an ad-
justment of depth values to the previously existing set. Instead, we apply a joint bilateral
upsampling step [44], which produces smoother depth maps without the expensive pro-
cedure of storing and looking up the set of possible values. Finally, again in order not to
create false values, we tuned the parameters suggested in the original paper: the number
of anisotropic diffusion iterations was decreased from 35 to 20 and the pyramid contained
only 3 instead of 4 levels (mainly because the reconstructed objects were small enough not
to require the extra level). Notably, we empirically found the best standard deviation of
the Gaussian function that is used for calculating conduction coefficients to be 6.0, which
is exactly the value suggested in the paper.

Although the original approach by Vijayanagar et al. is targeted for real-time processing
using OpenCL and GPU parallelisation, the implemented modified version was running
in 0.1 - 0.2 seconds entirely on the CPU. Figure 5.2 displays the effect of the depth re-
finement procedure on a sample Kinect RGB-D pair, taken from the fr3/teddy 3D object
reconstruction sequence of the RGB-D Benchmark [78]. One can see the reduced amount

37

5. 3D Reconstruction Pipeline

of missing data around the head, neck and feet of the teddy bear, in addition to the over-
all smoother transition between neighbouring pixels. With such improved input, the SDF
registration can commence with boosted conditions for convergence, as outlined in the
following sections.

RGB Image Original Depth Refined Depth

Figure 5.2.: Effect of the depth refinement algorithm

5.3. Camera Tracking

In the chapters so far we have reasoned in favour of frame-to-frame camera tracking in an
unconstrained setting via implicit-to-implicit registration. Figure 5.3 depicts in detail the
procedure we propose.

Alignment is always done between the CTSDF of two frames. The first camera pose
is fixed to be identity rotation and zero translation, and therefore its voxel grid remains
unchanged over iterations. Its depth map is projected into 3D space in order to determine
the bounding volume, which is subsequently padded by a small margin (e.g. 2cm) on each
side, in order to allow for movement of the other SDF.

The initial guess for the pose of the second frame is also identity. Over iterations it is
gradually refined according to the energy minimisation scheme based on the linear system
described in Section 4.2.

Convergence is determined based on a threshold for the translational part of a pose
increment. This is sufficient to reflect the change to the whole pose, since the translation is
influenced by the rotational change [78]. In this sense, if the translational component falls
below a preset threshold (0.01 mm), the optimisation has converged, and the determined
pose is returned. If this does not happen within a fixed maximum number of iterations,
failure is detected and the depth map is discarded as unreliable. The next range image is
then registered against the last reliable frame. However, in order to keep the number of
poses in the trajectory consistent with the number of RGB-D pairs, an identity increment
is added to the trajectory in failure cases. Algorithm 2 summarises the process.

Figure 5.4 displays a cross-section through the residual Ereference − Ecurrent over pose
estimation iterations. We chose to show an extreme case of registration, where the initial
difference was about 10°, so that the residual is clearly visible. In the images green denotes
zero, which is the desired difference. Red corresponds to a difference in truncated signed
distances of 2, while blue stands for -2. The sequence shows every 5th iteration, with
the last image corresponding to iteration 41, where convergence was detected. One can

38

5.4. Global Pose Optimisation

Figure 5.3.: Camera Tracking Flowchart

observe the large residual at the start of registration, which quickly decreases in the initial
stages. From iteration 25 onwards only little difference is noticed in this cross-section,
however, improvements occur in other regions of the volume, since no convergence has
been detected yet. The final residual is not entirely perfect on the feet of the teddy bear,
because the initial configuration was very extreme. In usual tracking cases, where the
starting angular error is not more than 3-5°, the end error will be even smaller.

5.4. Global Pose Optimisation

The goal of multiview pose refinement is to improve the pose estimates of a selected set
of keyframes from the previously determined trajectory. We propose to solve this problem
via frame-to-model registration in the implicit-to-implicit CTSDF setting, following the
gradient descent scheme outlined in Section 4.3. The global model is a coloured weighted
average of the separate CTSDFs, generated as explained in Section 3.4.4. This is a conve-
nient way to encompass all range data into one, aiming for the best consensus between all
measurements.

39

5. 3D Reconstruction Pipeline

Algorithm 2: Camera Tracking Algorithm (Frame-to-frame Registration)
Inputs : target RGB-D pair Itarget, Dtarget

source RGB-D pair Isource, Dsource

Output : pose of the source pair P
Additional parameters: weight for the colour component of the energy wcolour

weight for the normals component of the energy wnormals

threshold for the translational update convergence threshold
maximum number of iterations max iters

volume← determine padded bounding box(Dtarget)
CTSDFtarget ← generate ctsdf(Dtarget, Itarget, volume, Identity)

P← Identity
iter ← 0
while iter < max iters do

// generate the target CTSDF from the new pose estimate
CTSDFsource ← generate ctsdf(Dsource, Isource, volume, P)

// execute an iteration of the linear-system based alignment
Pincrement ← lse alignment(CTSDFtarget, CTSDFsource, wcolour, wnormals)

// apply the increment
P← Pincrement P

// check for convergence
if ‖translational component(Pincrement)‖ < convergence threshold then

return P
end

iter ← iter + 1
end

// if not converged: return identity, signifying failure
return Identity

Since global registration is extremely sensitive to the quality of the initial state [74], we
employ a coarse-to-fine scheme. The optimisation starts with a large voxel size (4 or 2
mm). One alignment iteration is carried out for each single-frame CTSDF as source and
the weighted average as destination. Once all pose updates are determined, they are si-
multaneously applied. The pose of the first camera remains fixed to identity (no rotation,
zero translation) throughout the whole procedure, providing a common reference frame
for the multiple views.

In the next iteration, the single-frame SDFs are generated from the new pose estimates,
while the weighted average remains the same, since otherwise the objective function would
be modified. However, in order to reflect the changes in the global setup, the weighted av-
erage is recalculated every several cycles (e.g. on every 10th iteration). As soon as all
translational pose updates fall below a preset threshold, convergence is detected. Then the
next, finer level of the pyramid is taken, where the procedure is repeated.

Note that there is no need for a final voxel size much smaller than 1-2 mm, since the
improvement is limited by the depth map resolution, and decreasing the voxel size would
lead to accessing the same pixels repeatedly, thus not bringing additional information.
Figure 5.5 visualises the process, while Algorithm 3 summarises it for implementation.

40

5.5. TV-L1 Minimisation for Final Model Generation

5.5. TV-L1 Minimisation for Final Model Generation

Although the coloured weighted average used in the pose optimisation step is a model,
which can be rendered via techniques such as marching cubes [50], it is often not suffi-
ciently smooth, revealing even the smallest inaccuracies in pose estimation. Therefore, in
a final step a variational TV-L1 minimisation using geometric and colour regularisation is
carried out, as described in Section 3.4.4.

41

5. 3D Reconstruction Pipeline

Target RGB image Source RGB image

Initial Residual Iteration 5 Iteration 10

Iteration 15 Iteration 20 Iteration 25

Iteration 30 Iteration 35 Iteration 41: convergence

Figure 5.4.: Evolution of the residual during pose estimation

42

5.5. TV-L1 Minimisation for Final Model Generation

Figure 5.5.: Global Pose Optimisation Flowchart

43

5. 3D Reconstruction Pipeline

Algorithm 3: Global Pose Optimisation (Multiview Frame-to-model Registration)
Inputs : set of RGB-D pairs I1..n, D1..n

rough pose estimates Pinit
1..n

Output : refined poses P1..n

Additional parameters: coarsest voxel size init voxel size
finest voxel size final voxel size
weight for the colour component of the energy wcolour
weight for the normals component of the energy wnormals
frequency of weighted average generation wa frequency
threshold for the translational updates convergence threshold
maximum number of iterations per pyramid level max iters

volume← determine padded bounding box(D1..n,P
init
1..n)

voxel size← init voxel size

P1..n ← Pinit
1..n

iter ← 0
while voxel size ≥ finest voxel size do

CTSDF1 ← generate ctsdf(D1, I1, volume, voxel size, Identity)

while level iter < max iters do
// generate the remaining CTSDFs and optionally their weighted average
CTSDF2..n ← generate ctsdf(D1..n, I1..n, volume, voxel size,P1..n)
if level iter is a multiple of wa frequency then

weighted average← generate coloured wa(CTSDF1..n)
end

// execute an iteration of gradient descent alignment for each pose
for view p← 2 to n do

Pincr
p ← grad descent alignment(weighted average, CTSDFp, wcolour, wnormals)

end

// apply increments
P1..n ← Pincr

1..n P1..n

// check for convergence
if ∀p ‖translational component(Pincr

p)‖ < convergence threshold then
convergence at this level has been reached, exit inner loop

end

level iter ← level iter + 1
end

voxel size← voxel size/2
end

return P1..n

44

Part III.

Results and Evaluation

45

6. Evaluation Methodology

In this chapter the setups for testing the proposed approach are explained. First, the var-
ious types of range data are presented, together with the chosen data acquisition trajec-
tories. Then the state-of-the-art methods for comparison are described. Finally, the exact
metrics, on the grounds of which the evaluations are done, are explained.

6.1. Test Datasets

The types of data were already displayed in Figure 3.3, where they were used to demon-
strate the difference in range sensor quality.

Synthetic Datasets and Trajectories

As a proof of concept, we tested the proposed method on noise-free synthetic datasets,
acquired with various trajectories. Nine CAD object models1 were selected for this pur-
pose and resized to the range 20-40 cm per dimension, displayed in 6.1. They were chosen
in a way reflecting the variety of shapes (for comparison with geometry-based methods)
and textures (for comparison with visual odometry methods) encountered in everyday
situations:

• uni-coloured objects: bunny, turbine blade;

• objects with limited texture: Kenny, teddy;

• objects with texture in patches or layers: cow, tram;

• objects with rich texture: leopard, juice box, tea box;

• objects with a single symmetry axis: Kenny, teddy, cow, tram, juice box;

• objects with multiple symmetry axes: tea box.

Next, a selection of trajectories was created for testing, as shown in Figure 6.2. Each of
them contained 120 poses, generated from a sine wave propagated along a sphere with
various frequency and amplitude settings.

• Circular trajectory: spacing 3° horizontally, no vertical displacement. Models a ro-
tating turntable in front of a fixed camera.

1Model sources (last accessed: January 2015):
bunny: The Stanford 3D Scanning Repository,
turbine blade: Georgia Tech Large Geometric Models Archive,
Kenny, teddy, cow, tram, leopard, juice box, tea box: Archive3D

47

http://www.graphics.stanford.edu/data/3Dscanrep/
http://www.cc.gatech.edu/projects/large_models/
http://www.archive3d.net/

6. Evaluation Methodology

Figure 6.1.: Synthetic models: bunny, Kenny, teddy, cow, tram, leopard, juice box, tea box, turbine

• Wavy trajectory: sine wave frequency 5, amplitude 30 cm. Models hand-held sen-
sors.

• Abrupt trajectory: sine wave frequency 10, amplitude 40 cm. Designed for identifi-
cation of failure cases, since this is a quasi-unrealistic movement for a human.

circular

wavy

abrupt

Figure 6.2.: Synthetic trajectories

The datasets were rendered using Blender with the standard VGA resolution (640× 480
pixels) of Kinect-like sensors. In this way we had 27 synthetic trajectories at our disposal,
for each of which we have the original CAD model, the groundtruth trajectory, and noise-
free RGB-D images. This is the complete set of information needed for any of the evalua-
tion metrics, as explained later on in this chapter.

48

http://www.blender.org/

6.1. Test Datasets

GIS Datasets and Trajectories

The Siemens Global Inspection System allows for manual selection of a trajectory, which
is subsequently used for scanning an object. We acquired two sequences of 72 poses in a
circular trajectory with spacing 5°. The models are shown in Figure 6.3.

Figure 6.3.: GIS models: turbine, Pumba

In this setup we have the groundtruth trajectories at our disposal, together with high
quality RGB-D pairs of resolution 4008× 2672 pixels.

Kinect Datasets and Trajectories

We acquired sequences of 10 everyday objects using a Kinect-like device. The objects were
placed on a turntable, which was rotated in front of a fixed sensor. In addition, we placed
a markerboard on the turntable, which was used for groundtruth pose estimation, but not
utilised in the reconstruction pipeline itself. The variety of objects can be seen in Figure
6.4. They were again chosen to represent a wide range of different shapes and textures:

• reflective: phone, muesli box;

• with a single symmetry axis: Pumba, cow, milk box, book;

• radially symmetric (cylindrical): muesli box, tape;

• geometry with fine structures: turbine blade, Pumba, bench vise.

Figure 6.4.: Kinect-like models: bunny, blade, phone, Pumba, cow, milk box, muesli box, book, tape, bench vise

49

6. Evaluation Methodology

For this type of sequences we have near-groundtruth trajectory estimates from the marker-
boards. In addition, the CAD models of the Stanford bunny and the turbine blade are
available.

RGB-D Benchmark Datasets and Trajectories

The TUM RGB-D Benchmark [78] contains multiple datasets, the main application of which
is SLAM. Although our target application is object reconstruction, we evaluated the pro-
posed approach on some of the sequences, mainly from the 3D Object Reconstruction Cate-
gory. However, a large group of the provided datasets seemed inappropriate for our pur-
poses, since they include moving people and large rooms, or since the object of interest is
not visible in a high number of frames. The most suitable sequences for 3D object recon-
struction seemed to be fr3/teddy and fr1/plant, shown in Figure 6.5.

Figure 6.5.: RGB-D benchmark [78] models: fr3/teddy, fr1/plant

Thanks to these datasets, we have measurements from another Kinect-like sensor. In
addition, highly accurate groundtruth trajectories, acquired with an external measurement
system, are provided with the benchmark.

6.2. Evaluation Metrics for Camera Tracking

The most appropriate metric for camera tracking is the evaluation of the obtained trajec-
tory against the groundtruth one, which we have available for every type of dataset. Since
we carry out the tracking procedure frame-to-frame, we are interested in the frame-to-
frame drift, and not drift per second, as can be the case for SLAM systems [41]. In this
sense, we adapt the relative pose error (RPE) from the RGB-D benchmark [78], but we
modify it for frame-to-frame evaluation. Thus, we estimate the RPE of every pose incre-
ment, and report a root-mean-squared, average, minumum and maximum RPE over the
whole trajectory. In addition, we also evaluate the average, minimum and maximum an-
gular error per frame-to-frame camera transformation.

To sum up, the metrics for evaluating the performance of camera tracking are the fol-
lowing:

• Given: groundtruth trajectory {Q1, . . . ,Qn}, and estimated trajectory {P1, . . . ,Pn}.

50

6.2. Evaluation Metrics for Camera Tracking

• Relative pose error of the transformation from frame #i to #i+ 1:

RPEi→i+1 = (Pi
−1Pi+1)−1(Qi

−1Qi+1). (6.1)

• Root mean squared drift per frame over the whole trajectory:

RMS drift =

Ã
1

n− 1

n−1∑
i=1

‖transl(RPEi→i+1)‖2. (6.2)

• Average, min, max drift over frame-to-frame transformations.

• Average, min, max angular error over frame-to-frame transformations.

We chose to compare our tracking method against three state-of-the-art registration tech-
niques:

• ICP: As the most widely used geometry-based registration method, the comparison
with ICP is a must. The specific ICP variant we evaluated against was Generalized-
ICP (GICP) [73]. It is allegedly very robust to outliers thanks to its probabilistic
framework. GICP models both the data and target scans as locally planar struc-
tures, achieving a sort of plane-to-plane metric. This makes GICP one of the best-
performing ICP adaptations. We used the open-source implementation from the
Point Cloud Library. Note that we did not provide an initial guess for the trans-
formation between registered scans, to reflect completely the camera tracking setting
in an unknown environment. This can lead to problems with poor initialisation for
ICP in the presence of significant noise and in lack of sufficient overlap.

• KinectFusion: Since this is the work that revived SDF-based approaches, we evalu-
ated against it. For this we used RecFusion, which is an compellingly accurate and
robust commercial implementation by ImFusion.

• Dense Visual Odometry (DVO): As a state-of-the-art camera tracking method, we
evaluated our estimated trajectories versus the ones determined by the method of
Kerl et al. [41], which is available online. Since the subject of these tests is camera
tracking itself, we used only the frame-to-frame registration capabilities, without the
loop closure detection and the subsequent refinement. Note, however, the different
application scenarios: object reconstruction for our method and SLAM for the odom-
etry method. It is, therefore, expected that the SDF method would perform better in
small-scale limited-volume situations, while DVO would outperform in large-scale
tracking scenarios. The comparisons are, nevertheless, insightful.

51

http://pointclouds.org/
http://www.imfusion.de/
https://github.com/tum-vision/dvo_slam

6. Evaluation Methodology

6.3. Evaluation Metrics for 3D Object Reconstruction

Whenever available, the original CAD model was compared to the final mesh, using Cloud-
Compare. This software provides information about the distribution of cloud-to-cloud
and cloud-to-mesh distance error, which is a direct measure of the quality of the obtained
models. Since the end result of RecFusion is also a meshed model, we juxtaposed the error
reported by CloudCompare about it and the error estimated on our results.

Notes

As mentioned in Chapter 5 explaining the full pipeline, when the frame-to-frame tracking
does not converge, the image is deemed unreliable and is not used further in tracking,
while a pose increment of identity is added to the trajectory for keeping its length equal
to the number of frames. Our wrappers around DVO and GICP apply the same han-
dling. However, in the error evaluation these identity transformations were not taken into
account, because they would immensely increase the error even if tracking continued suc-
cessfully afterwards.

We used a personalized version of RecFusion, which outputs the pose estimates in ad-
dition to the final model. However, when failure in registration was detected, no pose in-
crement was stored. Therefore, the RecFusion trajectories usually contain less poses than
the number of frames and the correspondence to the image indices is not known. Thus
for evaluation we determined the closest groundtruth pose to each RecFusion pose and
continued with the metrics from above in the usual way. Consequently, for this approach
we evaluate only well determined poses and the assessment is slightly different. This can
be a source of discrepancies between the reported error values, however, it was the most
appropriate possibility to handle these results.

52

http://www.danielgm.net/cc/
http://www.danielgm.net/cc/

7. Experimental Results and Assessment

This chapter summarises the performed tests and discusses the significance of their results.
The experiments are separated into sensor quality categories, ranging from noise-free syn-
thetic data to inferior quality Kinect-like measurements. For each dataset, an evaluation of
the estimated trajectory and of the refined 3D model is given. Comparisons with state-of-
the-art methods for camera tracking and object reconstruction are also presented.

7.1. Synthetic Data

We tested our unified pipeline on the nine synthetic datasets presented in the previous
chapter as a proof of concept for the power of implicit-to-implicit registration, using only
the geometric component in the objective function. In addition, we compared the trajectory
errors with those of DVO, GICP and RecFusion. Finally, we evaluated the accuracy of
the final models outputted by our algorithm and by RecFusion against the original CAD
models. The results are presented below.

Tracking Evaluation

Our estimates were extremely similar to the groundtruth for the circular and wavy trajecto-
ries, as can be seen from Figures 7.1 and 7.2. In the case of the circular trajectory RecFusion
was nearly as accurate on the objects with articulate geometry. On the two models with
multiple symmetry axes, the juice box and the tea box, it performed poorer than the rest of
the approaches. DVO gave very good results on the objects with rich texture, and drifted
consistently on the bunny, Kenny, teddy and cow sequences, which are either uniformly
coloured or with very few distinctively coloured regions. In all cases GICP displayed the
worst results. These trends were also visible for the wavy trajectories, where the differ-
ences were even more acute. Our approach reproduced the groundtruth trajectory very
closely, followed by DVO and RecFusion, while GICP diverged severely in most cases.

The numerical comparisons corresponding to these results are summarised in Tables 7.1
and 7.2, and are visualised in Figures 7.3 and 7.4. The tables present the best performing
result in bold font. We have the best metrics everywhere, apart from the minimum drift per
pose increment, which was achieved by RecFusion with absolutely no error. Our biggest
average angular error was 0.09°, while it never exceeded 0.46°. The root-mean-squared
drift was never bigger than 1 mm, and was usually smaller, while the biggest recorded
value was 3.15 mm. These values testify that our approach is limited by the voxel size,
which was set to 2 mm for the tracking component. Interestingly, the implicit-to-implicit
registration achieves smaller error on the wavy trajectory than on the circular one. In
conclusion, we have shown that for these types of trajectories our method is better than
state-of-the-art approaches, which usually have at least an order of magnitude higher drift

53

7. Experimental Results and Assessment

and angular error. This is because DVO is highly dependent on texture, while our pipeline
can handle any type of colouring, while the ICP-based registration of GICP and RecFusion
is very sensitive to the exact geometry.

For the abrupt trajectory sequences most methods failed on most objects, apart from
the teddy, which seemed to be sufficiently large and geometrically distinctive to facilitate
registration. Therefore, this type of motion represents a failure case for all methods, and
gives insights on their limits. These can be viewed in Table 7.3 (where the biggest errors
are highlighted in red) and Figure 7.5. It can be observed that our method outperformed
the other techniques on all metrics for the teddy sequence. The motion that we estimated
for the other models was too erroneous to allow for pose optimisation to converge to the
true model. In these cases we usually exhibited the largest maximal angular error, while
RecFusion had the largest average angular error. However, our average angular error did
not exceed 8.3° even in the most extreme cases. GICP usually had the lowest angular
error overall. There was no clear trend concerning the drift, but we often had the worst
maximum drift per pose increment, while the average was object-dependent. We clearly
outperformed the other approaches on the juice box and the tea box, where our average
drift is less than 6 mm, while for the others it was almost 3 cm. Our root-mean-squared
drift was usually much higher than the average one, which means that our trajectories
contained significantly more outliers than the ones estimated by the other approaches.
Thus, it can be concluded that our method is rather sensitive to cases with extreme initial
angular differences, while it performs better than other methods in moderate cases, which
are more common in real tracking scenarios.

bunny Kenny teddy

cow tram leopard

juice box tea box turbine

Figure 7.1.: Tracking results on the circular synthetic trajectory

54

7.1. Synthetic Data

bunny Kenny teddy

cow tram leopard

juice box tea box
turbine

Figure 7.2.: Tracking results on the wavy synthetic trajectory

Reconstruction Evaluation

After tracking, 12 keyframes were selected at regular 10-frame intervals, thus having ap-
proximately 30° between poses. Usually if a user is interacting with the system, they can
select the keyframes in such a way that all parts of the object are visible. We wanted to
keep the fully automatic setting, and therefore have no guarantee that the whole surface
was observed. So errors in the final models, which are due to interpolation on unseen
regions, can be easily corrected by selecting a higher number of frames. The subsequent
pose optimisation converged immediately for the circular and wavy trajectories and the
smooth TV-L1 models were generated. They are displayed in Figure 7.6. The final meshes
were rendered using marching cubes on a grid with voxel size 1 mm.

Table 7.4 summarises the mean and standard deviation errors of our models and the
ones generated by RecFusion in comparison to the real CAD models. RecFusion was run
with voxel size 0.8 - 1 mm, depending on the size of the object. The error for our models
is in the range -1 to 1 mm, which means that the model precision is only limited by the
grid resolution. RecFusion had lower standard deviation for the bunny, Kenny, teddy, tram
and turbine sequences, indicating that it is slightly more consistent than our approach on
geometrically simple models. Nevertheless, we achieve remarkable accuracy, comparable
to that of the KinectFusion implementation.

55

7. Experimental Results and Assessment

object method
drift [m/frame] angular error [°/frame]

RMS avg min max avg min max

bunny

DVO 0.0024599 0.0022734 0.0009311 0.0051567 0.1758453 0.0000000 0.4111684
GICP 0.0033875 0.0023616 0.0003695 0.0169163 0.2733477 0.0000000 1.7922591

RecFusion 0.0032108 0.0004724 0.0000000 0.0311766 0.0380466 0.0000000 2.9784925
proposed 0.0001066 0.0000855 0.0000052 0.0003113 0.0000000 0.0000000 0.0000000

Kenny

DVO 0.0030508 0.0023196 0.0004022 0.0195652 0.2143841 0.0000000 1.8846462
GICP 0.0199170 0.0152666 0.0004483 0.0318719 1.4985936 0.0000000 2.9934351

RecFusion 0.0011975 0.0003051 0.0000000 0.0121286 0.0181635 0.0000000 1.1589193
proposed 0.0001786 0.0001516 0.0000091 0.0004230 0.0016624 0.0000000 0.0395647

teddy

DVO 0.0027738 0.0023836 0.0004680 0.0082596 0.2500683 0.0000000 0.7813414
GICP 0.0020756 0.0018890 0.0001434 0.0050433 0.2633821 0.0000000 0.6305581

RecFusion 0.0013200 0.0002648 0.0000000 0.0141296 0.0165594 0.0000000 1.3977118
proposed 0.0000992 0.0000836 0.0000041 0.0002345 0.0003325 0.0000000 0.0395647

cow

DVO 0.0048922 0.0022126 0.0001868 0.0337501 0.2495112 0.0000000 3.5262825
GICP 0.0069215 0.0039269 0.0011914 0.0292515 0.4158586 0.1186941 3.1043471

RecFusion 0.0048459 0.0014797 0.0000000 0.0291084 0.1467638 0.0000000 2.7517320
proposed 0.0003814 0.0003348 0.0000189 0.0009994 0.0250437 0.0000000 0.1897456

tram

DVO 0.0010117 0.0008809 0.0000692 0.0026083 0.0726811 0.0000000 0.3956470
GICP 0.0065058 0.0029694 0.0003481 0.0245058 0.4597992 0.1312212 3.1763843

RecFusion 0.0041042 0.0012011 0.0000000 0.0295501 0.1391812 0.0000000 2.7701605
proposed 0.0003479 0.0002599 0.0000391 0.0016571 0.0257776 0.0000000 0.2438931

leopard

DVO 0.0026309 0.0005457 0.0000834 0.0284089 0.0366617 0.0000000 3.0616918
GICP 0.0017400 0.0014988 0.0000206 0.0065338 0.2116754 0.0000000 1.4182801

RecFusion 0.0072112 0.0018860 0.0000000 0.0313137 0.1726169 0.0000000 2.9934351
proposed 0.0001016 0.0000863 0.0000197 0.0003224 0.0006650 0.0000000 0.0395647

DVO 0.0071818 0.0039408 0.0004820 0.0340482 0.3852918 0.0000000 3.4829499
juice GICP 0.0050431 0.0029530 0.0003332 0.0314609 0.2981636 0.0000000 3.0010088
box RecFusion 0.0145186 0.0047376 0.0000000 0.1064493 0.3614313 0.0000000 4.4754678

proposed 0.0008695 0.0007283 0.0000177 0.0017794 0.0884378 0.0000000 0.4597004
DVO 0.0073024 0.0046988 0.0005882 0.0271085 0.4691189 0.0000000 2.8233379

juice GICP 0.0044593 0.0027046 0.0000963 0.0265907 0.1772689 0.0000000 0.5337572
box RecFusion 0.0856450 0.0289509 0.0000000 0.6347480 1.9091880 0.0000000 35.5206507

proposed 0.0009695 0.0007727 0.0001261 0.0031464 0.0325118 0.0000000 0.3916706

turbine

DVO 0.0022563 0.0020591 0.0005755 0.0051092 0.1859965 0.0000000 0.5496507
GICP 0.0062821 0.0041594 0.0000774 0.0307737 0.4490209 0.0395647 3.0150610

RecFusion 0.0042558 0.0011707 0.0000000 0.0304711 0.1044768 0.0000000 2.9350756
proposed 0.0002797 0.0002198 0.0000343 0.0010640 0.0085396 0.0000000 0.1046783

Table 7.1.: Evaluation metrics for the circular synthetic trajectory

56

7.1. Synthetic Data

bunny Kenny teddy

cow tram leopard

juice box tea box turbine

Figure 7.3.: Comparison of evaluation metrics for the circular synthetic trajectory
(top: drift, bottom: angular error)

57

7. Experimental Results and Assessment

object method
drift [m/frame] angular error [°/frame]

RMS avg min max avg min max

bunny

DVO 0.0027786 0.0025414 0.0004819 0.0060613 0.2018332 0.0000000 0.5143413
GICP 0.0030274 0.0024286 0.0001915 0.0152239 0.3007346 0.0000000 1.4793273

RecFusion 0.0205014 0.0180567 0.0000000 0.0407044 1.7930916 0.0000000 3.8878065
proposed 0.0000944 0.0000754 0.0000018 0.0003089 0.0016624 0.0000000 0.0395647

Kenny

DVO 0.0034684 0.0024597 0.0004124 0.0231250 0.2337419 0.0000000 2.2510544
GICP 0.0195245 0.0152978 0.0006450 0.0312916 1.5062747 0.0791294 3.0098640

RecFusion 0.0205017 0.0180507 0.0000000 0.0407962 1.7936643 0.0000000 3.8954506
proposed 0.0001577 0.0001352 0.0000112 0.0004006 0.0018001 0.0000000 0.0559529

teddy

DVO 0.0028212 0.0024599 0.0004799 0.0078391 0.2404824 0.0000000 0.7412454
GICP 0.0021936 0.0018202 0.0000350 0.0055590 0.2479986 0.0000000 0.6954847

RecFusion 0.0205320 0.0180926 0.0000000 0.0407036 1.7965527 0.0000000 3.8884106
proposed 0.0001022 0.0000860 0.0000091 0.0002624 0.0018001 0.0000000 0.0559529

cow

DVO 0.0021087 0.0017138 0.0002706 0.0062589 0.1769586 0.0000000 0.9827694
GICP 0.0163378 0.0144588 0.0016068 0.0328026 1.4332457 0.1582587 3.4404370

RecFusion 0.0206163 0.0181677 0.0000000 0.0404787 1.8099672 0.0000000 3.8645811
proposed 0.0003709 0.0003183 0.0000605 0.0010396 0.0293940 0.0000000 0.1855748

tram

DVO 0.0021447 0.0015071 0.0002885 0.0141419 0.1468194 0.0000000 1.7974921
GICP 0.0131172 0.0094739 0.0003316 0.0351151 0.9951021 0.0000000 4.0303714

RecFusion 0.0207237 0.0181754 0.0000000 0.0411277 1.8073819 0.0000000 3.9280709
proposed 0.0003486 0.0002922 0.0000198 0.0010175 0.0311168 0.0000000 0.1855748

leopard

DVO 0.0088432 0.0023056 0.0000458 0.0465716 0.2143957 0.0000000 4.7655477
GICP 0.0020426 0.0014458 0.0000745 0.0139550 0.2102045 0.0000000 1.2960146

RecFusion 0.0211109 0.0185269 0.0000000 0.0407307 1.8376097 0.0000000 3.8908258
proposed 0.0001021 0.0000884 0.0000090 0.0002236 0.0033248 0.0000000 0.0395647

DVO 0.0056215 0.0035515 0.0004304 0.0307606 0.3446555 0.0000000 3.1906458
juice GICP 0.0066370 0.0043935 0.0002030 0.0344170 0.4057555 0.0395647 3.0184342
box RecFusion 0.0379836 0.0264728 0.0000000 0.2198723 2.9445899 0.0000000 31.8128039

proposed 0.0005720 0.0004904 0.0000376 0.0013670 0.0623454 0.0000000 0.2373881
DVO 0.0058761 0.0041332 0.0006931 0.0199516 0.4090474 0.0000000 2.0313561

tea GICP 0.0069665 0.0057291 0.0004136 0.0218112 0.2648897 0.0000000 0.7454570
box RecFusion 0.0726619 0.0354840 0.0000000 0.3768974 2.2342680 0.0000000 7.1747191

proposed 0.0007137 0.0006348 0.0000579 0.0023268 0.0513209 0.0000000 0.3856290

turbine

DVO 0.0026870 0.0023325 0.0004093 0.0082212 0.2104359 0.0000000 0.8504126
GICP 0.0083549 0.0055917 0.0002794 0.0288158 0.5948641 0.0395647 2.8996585

RecFusion 0.0198975 0.0176736 0.0000000 0.0407220 1.7568382 0.0000000 3.8880078
proposed 0.0002046 0.0001627 0.0000107 0.0007892 0.0060120 0.0000000 0.0884693

Table 7.2.: Evaluation metrics for the wavy synthetic trajectory

58

7.1. Synthetic Data

bunny Kenny teddy

cow tram leopard

juice box tea box turbine

Figure 7.4.: Comparison of evaluation metrics for the wavy synthetic trajectory
(top: drift, bottom: angular error)

59

7. Experimental Results and Assessment

object method
drift [m/frame] angular error [°/frame]

RMS avg min max avg min max

bunny

DVO 0.0629367 0.0346562 0.0004623 0.2909223 3.1454326 0.1119058 25.6259566
GICP 0.0249703 0.0062876 0.0001910 0.2409567 0.7662285 0.0000000 25.0225832

RecFusion 0.0299282 0.0211625 0.0000000 0.0423249 3.1718172 0.0000000 6.3436344
proposed 0.0944349 0.0198091 0.0000131 0.6127612 2.5229149 0.0000000 78.9499733

Kenny

DVO 0.0422950 0.0240184 0.0017220 0.1796803 2.2817898 0.0685280 17.4729741
GICP 0.0173378 0.0131346 0.0004858 0.0495157 1.4712713 0.0395647 5.9275769

RecFusion 0.0664603 0.0559500 0.0000000 0.0987265 9.1633271 0.0000000 17.2140341
proposed 0.1522074 0.0651810 0.0000161 0.5585514 6.7392681 0.0000000 59.9807275

teddy

DVO 0.0240464 0.0133096 0.0004610 0.1006452 1.1531106 0.0395647 9.8901242
GICP 0.0024072 0.0020131 0.0000542 0.0077594 0.2430311 0.0000000 0.8185222

RecFusion 0.0452263 0.0322792 0.0000000 0.0753214 8.9812889 0.0000000 13.9772372
proposed 0.0001003 0.0000884 0.0000084 0.0002084 0.0016624 0.0000000 0.0395647

cow

DVO 0.0950952 0.0471491 0.0003188 0.3122357 4.0279981 0.0000000 27.4870854
GICP 0.1255147 0.1052380 0.0041449 0.2152359 10.4554739 0.5719806 20.1530335

RecFusion - - - - - - -
proposed 0.0909144 0.0167325 0.0000306 0.6709773 1.9587471 0.0000000 88.3638949

tram

DVO 0.1355310 0.0842114 0.0002709 0.3899743 7.3665126 0.0000000 43.8357534
GICP 0.1134809 0.0744294 0.0001861 0.2028601 7.5406005 0.0000000 20.6716835

RecFusion 0.0064877 0.0045875 0.0000000 0.0091750 0.4622482 0.0000000 0.9244963
proposed 0.1638896 0.0519278 0.0000338 0.6488427 5.3320391 0.0000000 83.3658332

leopard

DVO 0.1109295 0.0700776 0.0001664 0.2831688 6.3740521 0.0000000 26.6236281
GICP 0.0094400 0.0029454 0.0002241 0.0983127 0.3911474 0.0000000 13.1447652

RecFusion 0.0689420 0.0556539 0.0000000 0.0961474 14.3079033 0.0000000 25.8650873
proposed 0.1555930 0.0430349 0.0000096 0.7092819 5.1412965 0.0000000 115.8640894

DVO 0.0459790 0.0206799 0.0006662 0.2231459 1.8786980 0.0000000 23.9210151
juice GICP 0.0075875 0.0054231 0.0008082 0.0426052 0.6508314 0.0884693 3.1716985
box RecFusion 0.0390164 0.0275888 0.0000000 0.0551776 14.5990746 0.0000000 29.1981492

proposed 0.0181954 0.0036401 0.0000530 0.1459842 0.4049580 0.0000000 21.5583841
DVO 0.0550181 0.0275738 0.0002404 0.1969629 2.6076830 0.0000000 18.2733424

tea GICP 0.0099355 0.0072210 0.0004189 0.0236971 0.5204841 0.0000000 3.2727586
box RecFusion 0.0397395 0.0281001 0.0000000 0.0562002 4.7797527 0.0000000 9.5595054

proposed 0.0400886 0.0057858 0.0000442 0.3066665 0.5512004 0.0000000 30.5782287

turbine

DVO 0.0365144 0.0177515 0.0000957 0.2052455 1.4676542 0.0395647 15.9675410
GICP 0.0079515 0.0058476 0.0008510 0.0268474 0.6939415 0.0884693 3.1781089

RecFusion 0.0795899 0.0626633 0.0000000 0.1198169 14.3241052 0.0000000 22.4573001
proposed 0.1847865 0.0726840 0.0000392 0.7319708 8.2346880 0.0000000 87.2810507

Table 7.3.: Evaluation metrics for the abrupt synthetic trajectory

60

7.1. Synthetic Data

bunny Kenny teddy

cow tram leopard

juice box tea box turbine

Figure 7.5.: Comparison of evaluation metrics for the abrupt synthetic trajectory
(top: drift, bottom: angular error)

61

7. Experimental Results and Assessment

Figure 7.6.: Reconstructed models from synthetic data

object method mean [m] std. dev. [m]

bunny
RecFusion 0.000088 0.001020
proposed 0.000336 0.002074

Kenny
RecFusion 0.000173 0.000796
proposed -0.000069 0.000950

teddy
RecFusion 0.000196 0.000921
proposed 0.000063 0.001409

cow
RecFusion 0.000936 0.001622
proposed 0.000166 0.000866

tram
RecFusion 0.000579 0.001587
proposed 0.000356 0.001627

leopard
RecFusion -0.001329 0.003638
proposed 0.000086 0.001018

juice RecFusion 0.023742 0.015744
box proposed 0.001218 0.000974
tea RecFusion 0.012059 0.015781
box proposed 0.001785 0.002405

turbine
RecFusion 0.000761 0.000905
proposed 0.000093 0.001397

Table 7.4.: CloudCompare evaluation metrics against the original CAD models for synthetic data

62

7.1. Synthetic Data

Figure 7.7.: Comparison of our output against the original CAD models in CloudCompare

Figure 7.8.: Comparison of the RecFusion output against the original CAD models in CloudCompare

63

7. Experimental Results and Assessment

7.2. Industrial Quality Depth Data

A similar procedure was carried out on the acquired Siemens Global Inspection System
sequences, whereby the trajectories were estimated using DVO, GICP, RecFusion and
the proposed approach with energy solely based on its geometric component. They were
compared to the groundtruth, which was provided by the controller of the scanner motors.
Subsequently, our pipeline went into its pose optimisation stage, where it immediately
converged and the smooth TV-L1 model was generated. The same grid resolutions were
used as in all experiments: 2 mm voxel size for tracking, coarse-to-fine pyramid with 4 and
2 mm for pose optimisation, and 1 mm voxel size for CTSDF fusion into the final model.

Tracking Evaluation

The estimated trajectories are visualised in Figure 7.9. RecFusion lost the tracking as early
as the second frame of both sequences and is therefore not visible in the plots. Our implicit-
to-implicit registration evidently gave the best results, very close to the groundtruth. DVO
performed similarly, but was sometimes influenced by the reflective nature of the turbine
blade. GICP performed rather poorly. It can thus be concluded that the 5° pose difference
is too large to be handled by ICP-based approaches in an unconstrained scenario. This is,
however, not an obstacle for our approach.

turbine Pumba

Figure 7.9.: Estimated trajectories for the industrial depth sensor sequences

Table 7.5 summarises the evaluation of the drift and angular error for the four ap-
proaches and Figure 7.10 juxtaposes these values. Our method has more than a magnitude
better results. The average and root-mean-squared drift per pose increment is around 1
mm for both objects, which once again proves that we are only limited by the voxel size.
Moreover, the average angular error per transformation is only 0.045° and it never sur-
passes 0.72°. All metrics are slightly higher for the turbine because it is a larger object
which is more difficult to handle when viewed from the side, since it is very thin. These
tracking errors are small enough to be handled by subsequent pose optimisation or to be
compensated during distance field averaging, making our technique suitable for inclusion
in an industrial evaluation process.

Reconstruction Results

Figure 7.11 shows the meshes obtained at the end of the pipeline. In addition to the smooth
geometry resulting from the highly accurate tracking and the fine depth resolution of the
range images, the models exhibit extremely realistic colouring thanks to the high reso-
lution RGB camera. Thus our approach can be successfully applied for non-destructive
evaluation of industrial components.

64

7.2. Industrial Quality Depth Data

object method
drift [m/frame] angular error [°/frame]

RMS avg min max avg min max

turbine

DVO 0.0754960 0.0439403 0.0013761 0.2847936 2.5815507 0.1312212 17.8973068
GICP 0.0788902 0.0766785 0.0192732 0.0895087 4.4412655 1.3853374 5.1599499

RecFusion - - - - - - -
proposed 0.0017537 0.0010118 0.0001398 0.0105972 0.0455488 0.0000000 0.7187293

Pumba

DVO 0.0163201 0.0148293 0.0035756 0.0451828 0.8105102 0.2272818 2.7428998
GICP 0.0508450 0.0414197 0.0041008 0.0877981 2.5231359 0.1938266 5.1182050

RecFusion - - - - - - -
proposed 0.0008533 0.0007369 0.0000006 0.0022045 0.0445724 0.0000000 0.2797646

Table 7.5.: Evaluation metrics for the industrial depth sensor sequences

turbine Pumba

Figure 7.10.: Comparison of evaluation metrics for the industrial depth sensor sequences
(top: drift, bottom: angular error)

Figure 7.11.: Reconstructed models from the industrial depth sensor sequences

65

7. Experimental Results and Assessment

7.3. Kinect-like Depth Data

The tests on the sequences that we acquired with a Kinect-like sensor proceeded in a sim-
ilar way: we tracked using SDF grids of resolution 2 mm, after which we started a pose
optimisation scheme with 4 and 2 mm voxel size, which was concluded by a TV-L1 fusion
into a 1 mm grid, subsequently meshed via marching cubes. Because the data is noisier, we
evaluated the effects of incorporating colour and surface orientation constraints, as well as
the influence of depth map refinement.

As displayed in Figure 6.4, we put a markerboard on the turntable used for scanning in
order to estimate the groundtruth poses. It was, however, never used in registration. We
ensured this by applying a binary mask which keeps only the object and discards all other
data (the table and the background). The mask is generated by identifying the table as the
dominant plane in the image, and selecting the pixels which belong to an object inside the
prism whose base is the table. In our approach the mask is additionally used to determine
the constrained volume for frame-to-frame tracking, while it was used for removing the
non-static background for DVO and GICP. This procedure is expected to have a negative
effect on DVO, whose application is SLAM where the entire environment has to be taken
into account. The masks were not used for RecFusion since there the bounding volume is
set by the user. For it we used a voxel size of 0.8 mm for the bunny, cow, phone and tape,
0.9 mm for the blade, milk box, book, muesli box and bench vise, and 1.0 mm for the Pumba
model. This resolution was chosen according to the largest voxel size below or equal to 1
mm allowed for the selected bounding box.

Tracking Evaluation

Initially we run the pipeline taking every frame in the sequences, which ranged between
466 and 797 shots. However, we noticed that if we allow for a bigger difference between
consecutive poses, the estimation is much more robust since the accumulation of noise in
overlapping regions is escaped. In the case of every-frame tracking the estimates have the
correct orientation, but the translational component is smaller than the true one. Therefore
we will provide evaluations of our approach using the whole sequences and taking poses
spaced by about 10°.

Figure 7.12 exhibits the trajectories determined by the four methods using the full se-
quences. RecFusion is best tailored to Kinect data and achieves the best results for all
models apart from the two objects with multiple symmetry axes: tape and muesli box. Our
approach consistently provides poses which have correct angular displacement, but insuf-
ficient translation, as explained above. DVO has similar performance, while GICP usually
fails. Table 7.6 and Figure 7.14 summarise these experiments. It has to be taken into consid-
eration that RecFusion outputs poses only when it successfully tracked, thus it seems that
the trajectories were better than ours on the tape and muesli box, but as the plots showed
this is not the case. Thus for the Kinect sequences the tables have to be considered in
conjunction with the trajectory plots.

The experimental evaluations testify that the angular error of our approach is rather
small. Its average is usually around 0.2-0.3°, while it never exceeds 3°. The translational
drift is more considerable. Here it is not only influenced by the tracking grid resolution of
2 mm, but also by the severe noise in the Kinect range images. For the objects with simpler

66

7.3. Kinect-like Depth Data

geometry, such as Pumba, bunny, cow and book, the average drift is slightly more than 2 mm.
For the other objects it is higher, displaying worst performance for the symmetric tape and
muesli box objects, where it is approximately 8 mm. On all tests DVO reported comparable
values, while RecFusion was superior.

We are confident that the insufficient translational estimate is due to noise in the data
and not a shortcoming of the approach, because we managed to track accurately when
we allowed for bigger difference between frames. To be completely certain, we gener-
ated synthetic sequences of 900 - 1000 poses around a circle, thus mimicking a turntable.
The tracking was as good as for any other synthetic dataset. Therefore the inability to de-
termine the full translation is attributed entirely to the inferior quality of the data. The
solution is to allow for bigger displacement in Kinect sequences, which is what usually
seems to be the case in the RGB-D benchmark datasets.

bunny (797) blade (584) phone (699) Pumba (619) cow (654)

milk box (669) muesli box (619) book (736) tape (684) bench vise (466)

Figure 7.12.: Tracking results on the acquired Kinect sequences (number of frames are shown in brackets)

Figure 7.13 shows how closely the estimated trajectory follows the groundtruth when a
bigger step between frames is taken (apart from the cylindrical objects which still cannot
be properly handled).

bunny blade phone Pumba cow

milk box muesli box book tape bench vise

Figure 7.13.: Tracking results on the acquired Kinect sequences with 10-15° pose difference
(black: groundtruth, red: proposed approach)

67

7. Experimental Results and Assessment

object method
drift [m/frame] angular error [°/frame]

RMS avg min max avg min max

bunny

DVO 0.0029961 0.0024705 0.0001136 0.0107218 0.1765875 0.0000000 0.8659174
GICP 0.0162289 0.0065378 0.0000147 0.2915472 0.5508787 0.0000000 21.5782420

RecFusion 0.0022874 0.0016840 0.0000000 0.0083341 0.1393537 0.0000000 0.6954847
proposed 0.0024197 0.0020535 0.0000517 0.0070930 0.1607540 0.0000000 0.6142098

blade

DVO 0.0039611 0.0026278 0.0001055 0.0367694 0.2016690 0.0000000 3.1484136
GICP 0.0161919 0.0086635 0.0000323 0.3002459 0.7426300 0.0000000 23.1740535

RecFusion 0.0031469 0.0021598 0.0000000 0.0131423 0.1745525 0.0000000 1.1021488
proposed 0.0036235 0.0024410 0.0001132 0.0343871 0.2030177 0.0000000 2.9430657

phone

DVO 0.0051776 0.0034111 0.0000726 0.0428681 0.2573756 0.0000000 3.3565951
GICP 0.0531952 0.0097156 0.0000234 1.1668327 0.8938153 0.0000000 108.7421486

RecFusion 0.0025258 0.0018954 0.0000000 0.0079023 0.1597651 0.0000000 0.6620447
proposed 0.0034091 0.0027636 0.0001525 0.0132372 0.2324417 0.0000000 1.0623726

Pumba

DVO 0.0037625 0.0032530 0.0000931 0.0116990 0.2545548 0.0000000 0.9004792
GICP 0.0110224 0.0076240 0.0000230 0.1892488 0.6509678 0.0000000 13.4707395

RecFusion 0.0027852 0.0018027 0.0000000 0.0093226 0.1426995 0.0000000 0.7813414
proposed 0.0025871 0.0022247 0.0001064 0.0082168 0.1741084 0.0000000 0.7423006

cow

DVO 0.0027241 0.0023019 0.0000794 0.0097418 0.1708640 0.0000000 0.7121654
GICP 0.0556098 0.0106046 0.0001277 1.2443502 0.9210127 0.0000000 122.4836392

RecFusion 0.0028140 0.0018914 0.0000000 0.0103314 0.1508907 0.0000000 0.9022159
proposed 0.0024368 0.0020346 0.0000709 0.0126151 0.1571830 0.0000000 1.0645805

DVO 0.0035607 0.0030549 0.0000976 0.0176808 0.2484147 0.0000000 1.5159116
milk GICP 0.0068915 0.0065836 0.0000159 0.0131152 0.5655362 0.0000000 1.1232513
box RecFusion 0.0025251 0.0018035 0.0000000 0.0096997 0.1450562 0.0000000 0.8411586

proposed 0.0038264 0.0032078 0.0000756 0.0097974 0.2655620 0.0000000 0.8586559
DVO 0.0040067 0.0034533 0.0002776 0.0206381 0.2956080 0.0000000 1.5354066

muesli GICP 0.0087010 0.0076520 0.0001121 0.0815659 0.6503062 0.0000000 6.7986422
box RecFusion 0.0018893 0.0009345 0.0000000 0.0114435 0.0760823 0.0000000 0.9159910

proposed 0.0083629 0.0077459 0.0002388 0.0226854 0.6620541 0.0000000 2.0255682

book

DVO 0.0014849 0.0012956 0.0001301 0.0080249 0.0903972 0.0000000 0.6293156
GICP 0.0065536 0.0062131 0.0001803 0.0405928 0.5324232 0.0000000 2.8807000

RecFusion 0.0037670 0.0016540 0.0000000 0.0604979 0.1194941 0.0000000 3.1319614
proposed 0.0021326 0.0019541 0.0001188 0.0052486 0.1368279 0.0000000 0.4073435

tape

DVO 0.0061668 0.0046230 0.0001064 0.0293352 0.3524186 0.0000000 2.5026526
GICP 0.0107916 0.0069613 0.0000531 0.1588735 0.5953275 0.0000000 12.2947279

RecFusion 0.0024238 0.0016331 0.0000000 0.0083547 0.1342302 0.0000000 0.7391305
proposed 0.0071999 0.0066380 0.0001409 0.0256341 0.5731722 0.0000000 2.2353524

DVO 0.0030094 0.0024244 0.0001180 0.0113822 0.1851294 0.0000000 0.8613861
bench GICP 0.0102144 0.0095838 0.0000598 0.0224431 0.8200107 0.0000000 1.9077618
vise RecFusion 0.0033495 0.0019318 0.0000000 0.0198757 0.1526394 0.0000000 1.6767362

proposed 0.0056463 0.0044023 0.0001505 0.0201946 0.3660438 0.0000000 1.9007744

Table 7.6.: Evaluation metrics for the acquired Kinect sequences

68

7.3. Kinect-like Depth Data

bunny blade phone Pumba

cow milk box muesli box book

tape bench vise

Figure 7.14.: Comparison of evaluation metrics for the acquired Kinect sequences
(top: drift, bottom: angular error)

69

7. Experimental Results and Assessment

Evaluation of Depth Map Refinement, Surface Colour and Orientation
Constraints

For the implicit-to-implicit registration we assessed the effect of adding the remaining
components to the objective function. We run tests with 8 types of settings:

• geometry only;

• geometry and surface colour;

• geometry and surface normals;

• geometry, surface colour and normals;

• depth map refinement and geometry;

• depth map refinement, geometry and surface colour;

• depth map refinement, geometry and surface normals;

• depth map refinement, geometry, surface colour and normals.

We applied them to all 10 objects, both with the full and sparse trajectories. In many of
the cases the influence of these components was only fractions of millimeters, especially
for the complete sequences. When taking frames with difference 10-15°, sometimes adding
colour constraints slightly increased the error. This can be attributed to the fact that ini-
tially the poses are very different and the colour does not give information which could
steer the convergence precisely. Thus it would be safer to start including the colour com-
ponent only after a certain number of iterations, when the overlap is bigger. Here we will
present in Table 7.7 only several of the results, which give good insights into the power of
these constraints.

The phone, Pumba and book values show that the separate components usually give a
slight boost towards the optimal pose. However, when both the colour and normal con-
straints are applied on a depth-smoothed image, the outcome is destructive. This is a sur-
prising result, given that even combinations of two of the factors lead to improvements.
The weights for the colour and normal energy elements were not changed in the various
tests. Therefore, it would most likely be better to decrease them when they are used in
combination, so that the reported improvements from separate constraints can be fully
taken advantage of in the complete objective function. A similar trend is observed in the
milk box sequence, however, there depth map refinement generally has a negative effect,
and thus the weights have to be tuned in all cases. For the muesli box we see that the com-
bination of all three factors actually leads to an overall improvement, since the last row
of that section exhibits the lowest errors on all metrics. This is a proof that the complete
objective function is well-designed and the only obstacle for it can be caused by the in-
appropriately chosen weighting factors. For the tape sequence using colour constraints is
better than using an objective function with geometric component only, both for raw and
for smoothed depth maps. Thus, we can conclude that the colour constraints are definitely
useful in the case of cylindrical objects, such as the muesli box and tape. This is a major ad-
vantage over methods which are purely based on geometric constraints, such as ICP and

70

7.3. Kinect-like Depth Data

KinectFusion. Although these objects were not tracked perfectly since we were not specifi-
cally targeting radial symmetry, this result is a very good indication of the potential of the
CTSDF approach. To sum up, various examples have shown that additional constraints
are helpful for the registration, but also that the weighs with which they are applied have
to be carefully chosen. In order to avoid skipping the optimum, it would be best to pick
lower weights and probably wait for more iterations, but converge to a more correct pose.

object energy drift [m/frame] angular error [°/frame]
components RMS avg min max avg min max

phone

geom. 0.0330152 0.0171178 0.0001015 0.1296510 1.5191253 0.0559529 11.2067923
geom. & colour 0.0328474 0.0172363 0.0008770 0.1298967 1.5287299 0.1046783 11.2490326
geom. & normals 0.0332674 0.0172094 0.0007093 0.1311622 1.5264806 0.0685280 11.3167079
geom. & colour & normals 0.0329447 0.0172852 0.0012678 0.1309204 1.5303922 0.0791294 11.3065895
smoothing & geom. 0.0257593 0.0136573 0.0009139 0.1314985 1.1882724 0.0685280 11.2179075
smoothing & geom. & colour 0.0241395 0.0108510 0.0008893 0.1310847 0.9387220 0.0685280 11.2013330
smoothing & geom. & normals 0.0259263 0.0139940 0.0005483 0.1317983 1.2259654 0.1046783 11.2231483
smoothing & geom. & colour & normals 0.0581955 0.0198431 0.0011641 0.3122919 1.7314851 0.0685280 27.3844638

Pumba

geom. 0.0068178 0.0062605 0.0026270 0.0135466 0.5346746 0.2272818 1.1521458
geom. & colour 0.0065507 0.0060126 0.0019612 0.0131974 0.4975070 0.1532334 1.1343455
geom. & normals 0.0070203 0.0063945 0.0019604 0.0140192 0.5441245 0.1631294 1.1941774
geom. & colour & normals 0.0069622 0.0064261 0.0017600 0.0134347 0.5307660 0.1312212 1.1480625
smoothing & geom. 0.0368361 0.0129843 0.0019641 0.1706147 1.1166233 0.2017411 14.6962964
smoothing & geom. & colour 0.0912488 0.0247310 0.0019871 0.4174388 2.2074584 0.1813082 38.0899068
smoothing & geom. & normals 0.0068526 0.0061607 0.0019815 0.0138824 0.5096573 0.1813082 1.0594215
smoothing & geom. & colour & normals 0.1784530 0.0471943 0.0016778 0.7567164 4.0295068 0.1480375 65.0724131

geom. 0.0141946 0.0122276 0.0009124 0.0242481 1.1100166 0.1769386 2.2103512
geom. & colour 0.0139616 0.0125923 0.0016950 0.0232424 1.1083245 0.2340679 1.8821526
geom. & normals 0.0147822 0.0128685 0.0010785 0.0252249 1.1580423 0.1813082 2.2855619

milk geom. & colour & normals 0.0146899 0.0132051 0.0010439 0.0252448 1.1570230 0.1897456 2.0298141
box smoothing & geom. 0.0305258 0.0210843 0.0025414 0.1138482 1.7904195 0.2470814 9.4625362

smoothing & geom. & colour 0.0280429 0.0172924 0.0015985 0.1126510 1.4666432 0.1724585 9.3712569
smoothing & geom. & normals 0.0311854 0.0218874 0.0013665 0.1145920 1.8723802 0.2502291 9.5268262
smoothing & geom. & colour & normals 0.0594811 0.0273544 0.0018685 0.2479488 2.3510231 0.1370561 21.4643230

book

geom. 0.0045197 0.0039910 0.0002691 0.0078644 0.2723722 0.0000000 0.5733473
geom. & colour 0.1841734 0.0374804 0.0004852 0.9915975 3.7095811 0.0685280 100.5907325
geom. & normals 0.0049316 0.0044107 0.0004044 0.0081536 0.2864446 0.0395647 0.5908274
geom. & colour & normals 0.1844742 0.0376490 0.0005503 0.9932081 3.7347046 0.0884693 101.1417327
smoothing & geom. 0.0042161 0.0037154 0.0004122 0.0076038 0.2548893 0.0000000 0.5453620
smoothing & geom. & colour 0.0033811 0.0029451 0.0002202 0.0066490 0.2155428 0.0000000 0.5066755
smoothing & geom. & normals 0.0045111 0.0039627 0.0005605 0.0079867 0.2626627 0.0000000 0.5706105
smoothing & geom. & colour & normals 0.2094471 0.0426291 0.0002953 1.1081301 4.4713694 0.0000000 118.9530980

geom. 0.1353218 0.1279968 0.0054243 0.2200940 11.0360982 0.5248852 19.5853143
geom. & colour 0.1659903 0.1365592 0.0036326 0.5917493 11.8157185 0.3582736 53.1343984
geom. & normals 0.1348871 0.1282822 0.0070962 0.2156851 11.0548038 0.6921003 19.2021911

muesli geom. & colour & normals 0.2807137 0.1727565 0.0038308 1.1811228 15.6849775 0.3753437 121.0930540
box smoothing & geom. 0.1400392 0.1325081 0.0059923 0.2546834 11.3801455 0.6039294 21.4891764

smoothing & geom. & colour 0.1685427 0.1399127 0.0046070 0.5936613 12.0593189 0.4528388 54.0464211
smoothing & geom. & normals 0.1504152 0.1367141 0.0051215 0.4076284 11.7487826 0.5352216 34.0269120
smoothing & geom. & colour & normals 0.1288450 0.1223788 0.0045989 0.1805117 10.4546700 0.4545639 16.0608529

tape

geom. 0.1331180 0.1257406 0.0047078 0.2680522 10.8751729 0.4925767 22.3147951
geom. & colour 0.1298956 0.1199721 0.0024160 0.2349937 10.3584524 0.2564085 21.1676220
geom. & normals 0.1332232 0.1265783 0.0091866 0.2598073 10.9240637 0.8891079 21.6135696
geom. & colour & normals 0.1382968 0.1268574 0.0031162 0.2444170 10.9581042 0.2960750 21.8534459
smoothing & geom. 0.1746014 0.1448523 0.0009956 0.5696706 12.5719655 0.1119058 48.8174809
smoothing & geom. & colour 0.1619988 0.1433948 0.0009699 0.2866856 12.3952415 0.0969133 24.3845306
smoothing & geom. & normals 0.1456144 0.1346902 0.0014763 0.3087394 11.6406993 0.1678587 25.7450897
smoothing & geom. & colour & normals 0.1449206 0.1308702 0.0013265 0.2710937 11.3064499 0.1312212 22.8309145

Table 7.7.: Effect of depth refinement, photometric and surface orientation constraints on the acquired Kinect sequences

71

7. Experimental Results and Assessment

Pose Optimisation Evaluation

For all models we evaluated the improvement of the keyframes’ poses achieved by pose
optimisation. This information is summarised in Table 7.8. Since global pose refinement is
sensitive to the initialisation, we assessed its effect on sequences that were tracked rather
well. In all cases we see that both the drift and the angular error are reduced thanks to the
multiview implicit-to-implicit registration.

object pose drift [m/frame] angular error [°/frame]
optimisation RMS avg min max avg min max

bunny before 0.0169128 0.0138685 0.0005075 0.0284748 1.1930853 0.1046783 2.5580254
after 0.0168520 0.0140344 0.0015053 0.0279281 1.2019509 0.1251145 2.5466782

blade before 0.0223594 0.0172369 0.0026695 0.0501029 1.5131647 0.1769386 4.8436013
after 0.0219157 0.0166940 0.0035916 0.0499341 1.5069114 0.1370561 4.8465098

Pumba before 0.0106541 0.0100654 0.0060300 0.0159071 0.8480610 0.4829489 1.3417113
after 0.0105636 0.0100503 0.0059782 0.0159401 0.8462280 0.4925767 1.3311694

cow before 0.0114409 0.0100707 0.0021650 0.0201669 0.8720119 0.1897456 1.7196012
after 0.0112237 0.0099255 0.0022096 0.0196599 0.8701505 0.1938266 1.7127599

bench before 0.0516560 0.0273467 0.0032767 0.1574797 2.2530699 0.3604515 12.6338549
vise after 0.0515619 0.0271060 0.0031035 0.1574276 2.2459743 0.3471788 12.6606439

Table 7.8.: Effect of pose optimisation on the acquired Kinect sequences

Although the reported improvements here are only slight, we see that there is always a
boost. Thus in the case of more severe errors in few of the poses, the effect will be more
noticeable and the precise poses will still be successfully recovered. Naturally, there is a
limit on the amount of initial error that can be handled, which is investigated later in this
chapter.

Reconstruction Evaluation

The final models produced after tracking with sufficient angular difference between frames
and subsequent pose optimisation are shown in Figure 7.15. Note that the background re-
moval masks were too inaccurate for the phone sequence, so for visual appeal the displayed
model is from an earlier test in which we recorded without a markerboard. In addition,
the RecFusion output models are also shown for comparison.

The models are of similar quality. We achieve the smoothness through the depth map
refinement procedure (cf. Section 5.2) and the TV-L1 SDF fusion (cf. Section 3.4.4). How-
ever, we take care not to apply these techniques too aggressively, so that no false data is
introduced into the models. On the other hand, RecFusion heavily applies a bilateral filter
to every incoming depth map, which is why the models look smoother than ours even
when the trajectories are inferior.

Both methods fail to deliver closed meshes for the cylindrical muesli box and tape objects,
because none was successful in tracking. There is a notable difference in the book sequence,
which our technique handled better. This can be recognised from the letters of the ”C++”
title, which are blurred in the RecFusion model and sharp in ours. Thus we can state that
the proposed approach manages objects with poor geometry better than KinectFusion.

72

7.3. Kinect-like Depth Data

proposed RecFusion proposed RecFusion

Figure 7.15.: Comparison of reconstructed models by the proposed approach and RecFusion
73

7. Experimental Results and Assessment

The CAD models for the bunny and the blade were available, so we further compared
our and the RecFusion meshes to them, as can be seen in Figure 7.16 and in Table 7.9.
The errors of both models are comparable, with the RecFusion bunny being slightly more
precise than ours and our blade a bit more accurate than the other one. In combination
with the fact that both of our meshes are generated from a grid of voxel size 1 mm, while
the RecFusion bunny was of resolution 0.8 mm and blade had 0.9 mm, we conclude that
the proposed approach can deliver extremely precise models. The mean error is less than
1.5 mm, which taken into account with the high amount of noise in Kinect data, is rather
precise.

Figure 7.16.: Comparison of output meshes against the original CAD models in CloudCompare
(top: proposed approach, bottom: RecFusion)

object method mean [m] std. dev. [m]

bunny
RecFusion 0.000829 0.001338
proposed 0.001107 0.001658

blade
RecFusion 0.001540 0.001695
proposed 0.001484 0.001645

Table 7.9.: CloudCompare evaluation metrics against the original CAD models for the acquired Kinect sequences

74

7.4. RGB-D Benchmark

7.4. RGB-D Benchmark

Since the RGB-D benchmark is composed from Kinect-like images, we followed the same
procedure as for our own Kinect sequences, i.e. we included an evaluation of range image
smoothing and surface colour and orientation constraints. Contrary to the approach in the
previous section, here we did not have masks for the background at our disposal. There-
fore, we used a threshold on the distance as a way to only consider regions dominated by
the object. For the fr3/teddy sequence this was 1.5 m, while for the fr1/plant it was 1.2 m.

Tracking Evaluation

Figure 7.17 shows the estimated trajectories on all the 2323 images of the fr3/teddy sequence
and on a segment with 1500 poses for better visualisation, as well as on all the 1121 of the
fr1/plant sequence. The motion displayed for our approach is based solely on the geometric
component of the energy function, without depth map smoothing. RecFusion outputted
2056 poses out of the fr3/teddy trajectory and only 366 out of the fr1/plant one, indicating
the amount of frames which are extremely difficult to handle. It was run with grid res-
olutions of 2.0 and 1.9 mm respectively. The middle image displays quite clearly how
well RecFusion can track the fr3/teddy sequence, followed by our approach with a slight
drift. It can be observed that the three methods, apart from GICP, track rather well at the
beginning and start gradually drifting around frame 300 and 350 respectively, where the
object is at a high distance and thus the noise in the range maps is significant. Based on
the failure rate of the ICP implementation in both scenarios, we can state that the overlap
between consecutive frames is too small to be handled by such unconstrained approaches
that seek explicit correspondences from geometric cues. As the drift is too severe towards
the end and the trajectories too long to allow for pose optimisation using a low number of
keyframes, we will not proceed with an evaluation of the reconstruction component of the
pipeline.

fr3/teddy: whole sequence fr3/teddy: first 1500 frames fr1/plant: whole sequence

Figure 7.17.: Estimated trajectories on the RGB-D benchmark sequences

Because of the accumulation of drift, we evaluated the sequences in stages of 400 frames.
Note that this is not possible to evaluate for the results from RecFusion, since the approach
outputs only the successfully estimated poses without associating them with the original
frame number. More exact tracking comparisons are provided in Tables 7.10 and 7.11. As
already observed from the trajectory plots, GICP performs worst in all cases.

75

7. Experimental Results and Assessment

For the fr3/teddy sequence there is a clear trend that our approach provides the best
results on the majority of metrics, apart from the range 1601 - 2000. The reason for this is
that between frames 1900 and 2000 the camera approaches very near to the object and in
some frames only a few pixels on the rims of the teddy’s ears are taken into consideration.
The one metric on which DVO is better than us is the average angular error, but ours is not
significantly higher and is within 1° for all frame ranges. Moreover, the errors reported
for RecFusion are higher than ours on the entire sequence. Thus we can conclude that our
approach is performing best overall in tracking fr3/teddy.

The situation is slightly different for fr1/plant, where DVO performs best on the first half
of the sequence and we prevail in the second. The poorer performance can be attributed to
the geometry of the object, since a lot of data can be missing or severely influenced by noise
along the borders of the leaves. We, however, consistently show the lowest average drift
per frame. Our root-mean-squared drift never exceeds 2 cm per frame and is an order of
magnitude lower on average. This is acceptable considering the amount of blurred frames
and the fact that we are limited by the 2 mm voxel size for tracking, which is rather big
for fine structures like the leaves. The comparative metrics for the complete sequences are
visualised in Figure 7.18, where the results discussed above can be verified.

frame
method

drift [m/frame] angular error [°/frame]
range RMS avg min max avg min max

whole

DVO 0.0062448 0.0042215 0.0001592 0.1103380 0.3741795 0.0000000 6.0301245
GICP 0.0615412 0.0194757 0.0001188 1.2141553 1.1360191 0.0000000 114.3701953

RecFusion 0.0704261 0.0178351 0.0000000 0.6035286 1.3389024 0.0000000 36.7321842
proposed 0.0084534 0.0032362 0.0000313 0.2726533 0.5902023 0.0000000 31.9525648

1 - 400
DVO 0.0041724 0.0033793 0.0003014 0.0269906 0.2739163 0.0000000 2.4386559
GICP 0.0208602 0.0141579 0.0025221 0.3036752 0.7339636 0.1312212 9.2459220

proposed 0.0037044 0.0030159 0.0002271 0.0126066 0.3604114 0.0000000 1.5825999

401 - 800
DVO 0.0054855 0.0045785 0.0001592 0.0228796 0.3607833 0.0000000 2.2496632
GICP 0.0344605 0.0177440 0.0013174 0.4220929 0.9295328 0.1426525 9.0824498

proposed 0.0037550 0.0031455 0.0002530 0.0146447 0.6164618 0.0000000 2.3768890

801 - 1200
DVO 0.0053592 0.0043560 0.0002273 0.0244846 0.4194619 0.0395647 3.8694397
GICP 0.0168206 0.0116990 0.0007795 0.1346590 1.0982952 0.1769386 4.8587716

proposed 0.0026769 0.0022252 0.0001432 0.0124110 0.5683427 0.0000000 3.1600775

1201 - 1600
DVO 0.0047603 0.0037578 0.0002788 0.0275269 0.3868536 0.0000000 4.3193348
GICP 0.0425371 0.0190230 0.0020932 0.5302488 1.2164206 0.1724585 12.3893366

proposed 0.0038702 0.0029836 0.0001521 0.0160639 0.6056614 0.0000000 2.9942195

1601 - 2000
DVO 0.0111285 0.0059699 0.0002726 0.1103380 0.5301829 0.0000000 6.0301245
GICP 0.1343815 0.0421182 0.0001529 1.2141553 2.1288933 0.0395647 114.3701953

proposed 0.0194922 0.0062594 0.0000313 0.2726533 1.0399736 0.0395647 31.9525648

2000 - 2323
DVO 0.0042337 0.0033088 0.0002736 0.0163368 0.2730446 0.0000000 2.7673334
GICP 0.0169638 0.0103354 0.0001188 0.1074242 0.6075892 0.0000000 3.6894466

proposed 0.0022271 0.0016806 0.0000998 0.0135784 0.3282948 0.0000000 2.4951352

Table 7.10.: Evaluation metrics for different frame ranges of the fr3/teddy sequence

76

7.4. RGB-D Benchmark

frame
method

drift [m/frame] angular error [°/frame]
range RMS avg min max avg min max

whole

DVO 0.0076794 0.0058513 0.0000918 0.0636973 0.4039900 0.0000000 10.3836834
GICP 0.0364236 0.0206245 0.0017480 0.7920175 0.9473609 0.0395647 18.2855979

RecFusion 0.1018840 0.0346787 0.0000000 0.7867011 2.8062980 0.0000000 50.8280846
proposed 0.0153443 0.0050927 0.0000718 0.3872918 0.5469910 0.0000000 24.9517047

1 - 400
DVO 0.0076830 0.0061924 0.0004915 0.0344008 0.3373028 0.0000000 2.3726040
GICP 0.0259410 0.0214385 0.0017483 0.1339855 0.9940666 0.0395647 4.4621535

proposed 0.0199892 0.0051096 0.0001430 0.3872918 0.5614741 0.0000000 24.9517047

401 - 800
DVO 0.0075951 0.0057697 0.0000918 0.0382885 0.3939977 0.0000000 4.4141737
GICP 0.0507847 0.0224434 0.0018565 0.7920175 1.0062904 0.1678587 18.2855979

proposed 0.0050090 0.0039897 0.0003906 0.0326029 0.4899351 0.0000000 2.4373715

801 - 1121
DVO 0.0131168 0.0072097 0.0001933 0.1729702 0.7709561 0.0000000 62.0822401
GICP 0.1608326 0.0499305 0.0017480 2.6235206 1.1996066 0.0559529 93.8719731

proposed 0.0171932 0.0064801 0.0000718 0.1937379 0.6013351 0.0000000 10.9351049

Table 7.11.: Evaluation metrics for different frame ranges of the fr1/plant sequence

fr3/teddy fr1/plant

Figure 7.18.: Comparison of evaluation metrics for the RGB-D Benchmark sequences
(top: drift, bottom: angular error)

77

7. Experimental Results and Assessment

Evaluation of Depth Map Refinement, Surface Colour and Orientation
Constraints

Table 7.12 and Figure 7.19 give an overview of the effect of depth smoothing in combina-
tion with the geometric component of the objective function on both sequences. Although
there is no significant effect on the average angular error, the maximum is decreased by 30-
40%. Similarly, the root-mean-squared drift is reduced by 20-30% thanks to the anisotropic
diffusion depth refinement. The maximum translational error per transformation is even
more remarkably decreased by 40-60%. The minimum drift increases very slightly due to
the fact that new values are introduced into the depth maps, but this effect is essentially
not noticeable. These results undoubtedly confirm that the chosen depth map refinement
scheme is very apt in reducing the pose estimation error stemming from imperfections of
the input range measurements.

object depth map drift [m/frame] angular error [°/frame]
refinement RMS avg min max avg min max

fr3/teddy no refinement 0.0084534 0.0032362 0.0000313 0.2726533 0.5902023 0.0000000 31.9525648
depth refinement 0.0060777 0.0030907 0.0000405 0.1195358 0.6170335 0.0000000 22.4242335

fr1/plant no refinement 0.0153443 0.0050927 0.0000718 0.3872918 0.5469910 0.0000000 24.9517047
depth refinement 0.0122276 0.0058061 0.0001592 0.2330571 0.5955058 0.0000000 14.7716155

Table 7.12.: Effect of depth refinement on the RGB-D benchmark sequences

fr3/teddy fr1/plant

Figure 7.19.: Comparison of the effect of depth refinement on the RGB-D benchmark sequences

78

7.4. RGB-D Benchmark

As discussed in the section above, we perform better on the fr3/teddy sequence in which
the motion is smoother, the object is bigger and fully visible in many frames. Thus we
carried out extensive tests on the other sequence, fr1/plant, in order to assess the improve-
ment brought by range smoothing, photometric and curvature constraints, and combina-
tions thereof. Table 7.13 and Figure 7.20 display the outcome of these experiments. The
conclusion is that including the surface orientation component improves registration in
all cases. However, in order for colour to be helpful, the data has to be denoised be-
forehand, otherwise the error is multiplied. These effects are especially noticeable in the
translational component, while the angular error remains only slightly influenced. The
root-mean-squared drift is reduced by 30% from using only the signed distance compo-
nent of the objective function to applying depth map refinement and both surface colour
and orientation constraints. To sum up, additional energy components are useful when
the data is not noisy.

energy drift [m/frame] angular error [°/frame]
components RMS avg min max avg min max

geom. 0.0153443 0.0050927 0.0000718 0.3872918 0.5469910 0.0000000 24.9517047
geom. & colour 0.0254701 0.0056351 0.0001100 0.5800786 0.5865533 0.0000000 38.9122470
geom. & normals 0.0121727 0.0049778 0.0002568 0.2261878 0.5379035 0.0000000 13.3375963
geom. & colour & normals 0.0255950 0.0056536 0.0003060 0.5797963 0.5917816 0.0000000 37.2109483

smoothing & geom. 0.0122276 0.0058061 0.0001592 0.2330571 0.5955058 0.0000000 14.7716155
smoothing & geom. & colour 0.0122002 0.0057934 0.0002365 0.2292548 0.5917066 0.0000000 14.7502422
smoothing & geom. & normals 0.0122841 0.0058648 0.0002067 0.2327896 0.6010806 0.0000000 14.7501900
smoothing & geom. & colour & normals 0.0109210 0.0057816 0.0002149 0.1742158 0.5896304 0.0000000 12.3558705

Table 7.13.: Effect of depth refinement, photometric and surface orientation constraints on the fr1/plant sequence

raw depth maps refined depth maps

Figure 7.20.: Comparison of the effect of depth refinement, photometric and surface orien-
tation constraints on the fr1/plant sequence

79

7. Experimental Results and Assessment

7.5. Features

In this section we will summarise the influence of the various registration components that
were discussed in detail in the data-specific chapters above.

Effect of Incorporating Colour and Surface Normal Constraints

The sections on Kinect sequences proved that adding the photometric and curvature con-
straints to the objective function leads to improvements when the depth maps are de-
noised. The surface normals alone help even in the case of noisy data. From an imple-
mentational point of view, calculating the normals does not bring additional burden, since
they are already present as the gradient of the signed distance field. Thus, it is advisory to
always include them, because they speed up convergence, lead to a more optimal solution,
do not occupy additional memory and do not entail a decrease in computational speed.

The photometric component has to be handled differently. It only boosts registration
when applied on refined geometry. Moreover, it requires the storage of an additional grid,
which might be a severe constraint for very fine voxel resolutions. Therefore, it is advisory
to use the colour component either on data from high-quality sensors or in applications
where the accuracy is critical, while memory and processing time are of low importance.

Effect of Depth Map Smoothing

The Kinect sequence analysis clearly showed that refining the depth maps is advanta-
geous. Since a non-optimised implementation takes a fraction of a second on a single-core
CPU, a parallelisation of the smoothing scheme can lead to instantaneous attainment of
improved range images. Thus this preprocessing step is highly recommended for better
precision.

Twists versus Augmented Unit Quaternions

All tests reported so far were using twists as parameterisation of rigid body motion. We
carried out a substantial amount of experiments using the augmented quaternion repre-
sentation as well. In the case of tracking it usually converged to a slightly more inaccurate
pose after 5% less iterations. Therefore if the goal is speed and more imperfections in
estimation are allowed, AUQs can be used for frame-to-frame tracking. For pose optimi-
sation, however, the quaternions lead to a 2-3 times faster convergence in most cases, but
with a much bigger error when the initial setup contained more error. Thus AUQs can be
used only provided a very good initialisation for multiview registration. Based on these
observations, we concluded that it is safer to use twist coordinates and preferred them
throughout the experimental stages.

Maximal Initial Misalignment

In the section discussing the sequences that we acquired with a Kinect-like sensor we noted
the curious fact that there should be a sufficient difference between poses in order to have
successful registration on noisy data. To determine this, we experimented with tracking

80

7.5. Features

on difference from 0.3° to 30° with each sequence. We concluded that it is optimal to
have at least 2-3° between poses, while a maximum of 25° displacement can be handled
for objects with simple geometry and 15° for more complex models. This means that we
require significantly less frames than other common tracking approaches.

As pose optimisation is rather sensitive to the initial setting [74], we executed several
tests in order to determine the limits of our implicit-to-implicit frame-to-model multiview
pose refinement. To achieve this goal, we used the bunny and teddy synthetic models and
two pose setups: 12 poses in a circle around the mid-height of the object, and 42 equally
spaced poses on an icosahedron surrounding the whole model. We then introduced var-
ious amounts of noise into the poses and run the pose optimisation, but the depth maps
remained unaffected. When all views were influenced by noise, the true poses were suc-
cessfully recovered if the initial error was within 2-3° and 1.5 cm for an object of dimen-
sions 20 cm3. Naturally, when only few poses were subject to noise, these boundaries were
higher. Thus, when there is a smooth accumulation of drift with not too immense transla-
tional error, it can be successfully handled by our optimisation scheme. In case the initial
poses are significantly displaced from their correct positions, the refinement will lead to
a geometrically optimal model, which is however not the real one. So it is advisory to
ensure good tracking, followed by a refinement which will converge in a couple of quick
iterations.

81

7. Experimental Results and Assessment

82

Part IV.

Conclusion and Future Work

83

8. Summary

8.1. The Unified 3D Object Reconstruction Pipeline

We have succeeded in achieving the goals set out at the start of this thesis (cf. section 1.2).
More specifically, a complete pipeline for 3D model acquisition from RGB-D data has been
developed, in which the same objective function describes both the tracking and pose op-
timisation stages. In addition, explicit correspondence search has been circumvented by
solving the registration problem via a direct implicit-to-implicit optimisation scheme.
Last but not least, all available data has been used, which not only means dense registra-
tion with the entire depth maps instead of sparse features, but also incorporation of colour
and surface normal constraints, which are readily attainable from RGB-D image pairs.

After describing the approach, we presented results from multiple tests on data of var-
ious quality and from comparisons with state-of-the-art techniques. We juxtaposed our
tracking with a method based on photoconsistency (DVO), with an algorithm based on
geometrical constraints (GICP), and with a KinectFusion implementation (RecFusion). We
evaluated our final models against those delivered by RecFusion, establishing the compar-
ison on the true CAD models. These experiments revealed that we achieve state-of-the-art
tracking precision, while our 3D model accuracy is comparable to that of KinectFusion.

Why This Is Not a Bundle Adjustment Approach

Bundle adjustment is a technique for simultaneously refining the 3D point locations de-
scribing the scene geometry and the camera parameters for each viewpoint [81]. This is
similar to the problem that we solve through the pose optimisation stage of the pipeline:
jointly optimising the camera poses using a global CTSDF, from which the 3D geometry
can be extracted. However, our approach differs from bundle adjustment.

Classical BA is based on 2D colour images taken from different viewpoints, in which
keypoints are detected. The task is to find the 3D locations of these keypoints which pro-
vide for the best consensus between all views. Thus the reprojection error between 3D
points and 2D coordinates is minimised [15]. BA modifications exist, in which some of the
parameters are eliminated from the optimisation scheme via algebraic manipulation, e.g.
the camera orientations [93] or the 3D coordinates [75, 89]. It may seem that our pose opti-
misation is an instance of BA where the explicit 3D coordinates are removed and eventu-
ally derived from the SDF, but in fact the approach is fundamentally different. We optimise
only for the camera parameters and generate the global 3D weighted average model using
these estimates. Thus we never explicitly refine the 3D geometry. To leverage our method
as a bundle adjustment variant, the values in the depth maps can be iteratively modified
together with the camera poses. Unless such a step is included, the approach cannot be
considered as BA. However, we have proven that it is sufficiently powerful without such
complications and have therefore used the term global optimisation throughout this work.

85

8. Summary

8.2. Contributions

The main novelty of the proposed approach is the direct implicit-to-implicit registration,
incorporating both photometric and surface orientation constraints into a rather simple ob-
jective function, applied both in camera tracking and in global pose optimisation. Through
extensive experiments we showed that this technique has the following advantages over
existing methods:

• Tracking component:

– more accurate trajectory estimation than state-of-the-art approaches, such as
visual odometry in RGB-D data, ICP and often KinectFusion;

– robustness via frame-to-frame registration with failure recovery, instead of frame-
to-model matching which is prone to error accumulation;

– handling of tracking scenarios with large displacement between poses;

– not limited to a constrained volume, as the bounding box is determined on the
fly for every frame;

• Global optimisation and model reconstruction component:

– model accuracy comparable to KinectFusion;

– robustness thanks to a coarse-to-fine scheme on the voxel grid resolution;

– much fewer keyframes than graph optimisation methods required and, there-
fore, tendency of the algorithm to be much faster;

• Improved convergence in each stage through a combination of geometric, photo-
metric and curvature constraints on refined depth maps.

A major advantage of our pipeline over KinectFusion [36] and existing point-to-implicit
tracking and reconstruction methods, such as those by Bylow et al. [7] and Canelhas et
al. [9], is the introduction of the pose optimisation stage, which makes the final mesh even
more accurate. Since the proposed global refinement scheme requires much less views
than graph optimisation techniques such as g2o [47], this additional step is a quick and
computationally undemanding procedure, which is worth including in any reconstruction
routine.

86

9. Future Work

The follow-up work on the pipeline will address the issues that we identified as unimpor-
tant for the current approach in the related work chapter (cf. Section 2.1).

A brute-force approach to achieve real-time performance is to process the objective func-
tion on the GPU. This is what is done in the original KinectFusion implementation and
many of the other SDF registration techniques [59, 9, 86]. Therefore we have a straightfor-
ward way of significantly decreasing the computational time at our disposal.

In order to decrease the memory requirements, we will represent the TSDF grid as an
octree. Since large portions of the volume have a constant value of±1, representing empty
space or regions which have not been observed, the occupied memory will be signifi-
cantly reduced. An extension of KinectFusion which employs octrees for the SDF repre-
sentation has already been proposed by Zeng et al. [91, 92], where the authors suggest a
space-efficient data structure on the GPU, together with specialised SDF update and sur-
face prediction algorithms. A popular representation in the graphics community is the
adaptively sampled distance field (ADF) [26, 27], which reduces the memory usage due to
its octree nature, and the number of accesses during generation by adaptively sampling the
surface according to its local complexity. Another feasible approach is the existing open-
source OctoMap framework [87, 33], which is a tree-based 3D environment representation
using a probabilistic occupancy estimation, similar to the weight field of an SDF. These
techniques would allow us to extend the pipeline to full environment reconstruction, and
therefore make the approach appropriate for SLAM.

If, however, we still target purely CPU-based approaches, we will need another efficient
representation. Due to the fact that most values are ±1, we could store only the remaining
values, as indicated by Canelhas et al. [9]. However, this method still needs GPU process-
ing. To avoid this, a combination with an octree partitioning scheme would be needed, or
a completely different representation.

Other features of an SDF can also be improved. Apart from the voxel size, which is
related to the memory requirements, the SDF has two other parameters: δ which reflects
the sensor uncertainty, and η which represents the expected object thickness and is used
for the calculation of the weights. As suggested by Moravec [57], the sensor model can
be learned, whereby we would not have to estimate these parameters. This will decrease
errors due to suboptimal truncation and will require less user input.

To sum up, there are numerous possibilities to improve the SDF representation, to re-
duce its memory requirements and to decrease the registration speed. The extensions of
the pipeline to real-time processing and SLAM seem very feasible, for which we have laid
out clear and concrete future steps.

87

Bibliography

[1] J. Abhijit. Kinect for Windows SDK Programming Guide. Packt Publishing, 2012.

[2] M. R. Andersen, T. Jensen, P. Lisouski, A. K. Mortensen, M. K. Hansen, T. Gregersen,
and P. Ahrendt. Kinect Depth Sensor Evaluation for Computer Vision Applications.
Technical report ECE-TR-6, Department of Engineering - Electrical and Computer En-
gineering, Aarhus University, 2012.

[3] M. Aubry, K. Kolev, B. Goldluecke, and D. Cremers. Decoupling Photometry and
Geometry in Dense Variational Camera Calibration. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 1411–1418, 2011.

[4] F. Bernardini and H. Rushmeier. The 3D Model Acquisition Pipeline. Computer Graph-
ics Forum, 21(2):149–172, 2002.

[5] P. J. Besl and N. D. McKay. A Method for Registration of 3-D Shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239–256, 1992.

[6] R. M. Bolle and B.C. Vemuri. On Three-Dimensional Surface Reconstruction Methods.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 13(1):1–13, 1991.

[7] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-Time Camera Tracking and
3D Reconstruction Using Signed Distance Functions. In Robotics: Science and Systems
Conference (RSS), 2013.

[8] D. R. Canelhas. Scene Representation, Registration and Object Detection in a Trun-
cated Signed Distance Function Representation of 3D Space. Master’s thesis, Depart-
ment of Technology, Örebro University, 2012.

[9] D. R. Canelhas, T. Stoyanov, and A. J. Lilienthal. SDF Tracker: A Parallel Algorithm
for On-line Pose Estimation and Scene Reconstruction from Depth Images. In 2013
IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS), 2013.

[10] Y. Chen and G. Medioni. Object Modeling by Registration of Multiple Range Im-
ages. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation
(ICRA), pages 2724–2729, vol. 3, 1991.

[11] Y. Chiou, J. Tsai, and H. Hang. Depth Map Refinement for View Synthesis using
Depth Sensors and Color Image Cameras. In International Workshop on Advanced Image
Technology, 2013.

[12] P. Claes, D. Vandermeulen, L. Van Gool, and P. Suetens. Automatic, Robust and
Accurate 3D Modelling based on Variational Implicit Surfaces. Technical report
KUL/ESAT/PSI/0405, Katholieke Universiteit Leuven - Center for Processing Speech
and Images, 2004.

89

Bibliography

[13] P. Claes, D. Vandermeulen, L. Van Gool, and P. Suetens. Robust and Accurate Partial
Surface Registration based on Variational Implicit Surfaces for Automatic 3D Model
Building. In Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM),
2005.

[14] B. Curless and M. Levoy. A Volumetric Method for Building Complex Models from
Range Images. In Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’96, pages 303–312, 1996.

[15] F. Dellaert. Visual SLAM Tutorial: Bundle Adjustment. Technical report, June 2014.

[16] J. Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vec-
tors. Technical report, Stanford University, 2006.

[17] M. Dimashova, I. Lysenkov, V. Rabaud, and V. Eruhimov. Tabletop Object Scanning
with an RGB-D Sensor. In Third Workshop on Semantic Perception, Mapping and Ex-
ploration (SPME) at the 2013 IEEE International Conference on Robotics and Automation
(ICRA), 2013.

[18] E. Eade. Lie groups for 2D and 3D Transformations. Technical report, 2013.

[19] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-D Rigid Body Transfor-
mations: A Comparison of Four Major Algorithms. Machine Vision and Application,
9(5-6):272–290, 1997.

[20] A. Elfes and L. Matthies. Sensor Integration for Robot Navigation: Combining Sonar
and Stereo Range Data in a Grid-Based Representataion. In 26th IEEE Conference on
Decision and Control, volume 26, pages 1802–1807, 1987.

[21] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An Evaluation
of the RGB-D SLAM System. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2012.

[22] S. J. Esses, P. Berman, A. I. Bloom, and J. Sosna. Clinical Applications of Physical
3D Models Derived From MDCT Data and Created by Rapid Prototyping. American
Journal of Roentgenology, 196(6):683–688, 2011.

[23] H. Euler. Non-Destructive Evaluation Techniques Combined - The Global Inspection
System. Technical report, Siemens AG - Corporate Technology, 2010.

[24] J. A. Farrell. Computation of the Quaternion from a Rotation Matrix. Technical report,
University of California, Riverside, 2008.

[25] A. W. Fitzgibbon. Robust Registration of 2D and 3D Point Sets. In Proceedings of the
British Machine Vision Conference (BMVC), pages 1–10, 2001.

[26] S. F. Frisken and R. N. Perry. Efficient Estimation of 3D Euclidean Distance Fields
from 2D Range Images. In Proceedings of the IEEE / ACM SIGGRAPH Symposium on
Volume Visualization and Graphics, pages 81–88, 2002.

90

Bibliography

[27] S. F. Frisken and R. N. Perry. Designing with Distance Fields. In ACM SIGGRAPH
2006 Courses, SIGGRAPH ’06, pages 60–66, 2006.

[28] F. B. Gonzalez. Lie Algebras. Lecture notes, Tufts University, 2007.

[29] G. Graber, T. Pock, and H. Bischof. Online 3D Reconstruction Using Convex Opti-
mization. In 1st Workshop on Live Dense Reconstruction From Moving Cameras (ICCV,
2011.

[30] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, New York, USA, 2nd edition, 2003.

[31] P. Henry, D. Fox, A. Bhowmik, and R. Mongia. Patch Volumes: Segmentation-based
Consistent Mapping with RGB-D Cameras. In Proceedings of the 2013 International
Conference on 3D Vision (3DV), pages 398–405, 2013.

[32] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D Mapping: Using Depth
Cameras for Dense 3D Modeling of Indoor Environments. In International Symposium
on Experimental Robotics, 2010.

[33] A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: an
Efficient Probabilistic 3D Mapping Framework Based on Octrees. Autonomous Robots,
34(3):189–206, 2013.

[34] D. F. Huber and M. Hebert. Fully Automatic Registration of Multiple 3D Data Sets.
Image and Vision Computing, 21(7):637–650, 2003.

[35] V. G. Ivancevic and T. T. Ivancevic. Lecture Notes in Lie Groups. Technical report,
ArXiV e-prints, 2011.

[36] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. KinectFusion: Real-time 3D
Reconstruction and Interaction Using a Moving Depth Camera. In ACM Symposium
on User Interface Software and Technology (UIST), 2011.

[37] A. Johnson and S. B. Kang. Registration and Integration of Textured 3D Data. Image
and Vision Computing, 17.

[38] M. Jones, J. A. Baerentzen, and M. Sramek. 3D Distance Fields: A Survey of Tech-
niques and Applications. IEEE Transactions on Visualization and Computer Graphics,
12(4):581–599, 2006.

[39] W. Kehl, N. Navab, and S. Ilic. Coloured Signed Distance Fields for full 3D Object
Reconstruction. In Proceedings of the British Machine Vision Conference (BMVC), 2014.

[40] C. Kerl, J. Sturm, and D. Cremers. Dense Visual SLAM for RGB-D Cameras. In Pro-
ceedings of the International Conference on Intelligent Robot Systems (IROS), 2013.

[41] C. Kerl, J. Sturm, and D. Cremers. Robust Odometry Estimation for RGB-D Cameras.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
2013.

91

Bibliography

[42] K. Khoshelham and S. O. Elberink. Accuracy and Resolution of Kinect Depth Data
for Indoor Mapping Applications. Sensors, 12(2):1437–1454, 2012.

[43] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR Workspaces. In
Proceedings of the Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR), 2007.

[44] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele. Joint Bilateral Upsampling.
In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, 2007.

[45] D. B. Kubacki. Signed Distance Registration for Depth Image Sequence. Master’s
thesis, University of Illinois at Urbana-Champaign, 2011.

[46] D. B. Kubacki, H. Q. Bui, S. D. Babacan, and M. N. Do. Registration and Integration of
Multiple Depth Images using Signed Distance Function. In SPIE Proceedings, volume
8296, 2012.

[47] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A General
Framework for Graph Optimization. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 3607–3613, May 2011.

[48] A. V. Le, S. Jung, and C. S. Won. Directional Joint Bilateral Filter for Depth Images.
Sensors, 14:11362–11378, 2014.

[49] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,
S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital Michelangelo
Project: 3D Scanning of Large Statues. In Proceedings of ACM SIGGRAPH 2000, pages
131–144, 2000.

[50] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’87, pages 163–169, 1987.

[51] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3-D Vision: From Images to
Geometric Models. Springer Verlag, 2003.

[52] A. Makadia, A. Patterson, and K. Daniilidis. Fully Automatic Registration of 3D Point
Clouds. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1297–1304, 2006.

[53] T. Masuda. Generation of Geometric Model by Registration and Integration of Mul-
tiple Range Images. In Proceedings of the Third International Conference on 3-D Digital
Imaging and Modeling, 2001.

[54] T. Masuda. Registration and Integration of Multiple Range Images by Matching
Signed Distance Fields for Object Shape Modeling. Computer Vision and Image Un-
derstanding (CVIU), 87(1-3):51–65, 2002.

[55] T. Matsuo, N. Fukushima, and Y. Ishibashi. Weighted Joint Bilateral Filter with Slope
Depth Compensation Filter for Depth Map Refinement. In 8th International Conference
on Computer Vision Theory and Applications (VISAPP), pages 300–309, 2013.

92

Bibliography

[56] S. Milani and G. Calvagno. Joint Denoising and Interpolation of Depth Maps for MS
Kinect Sensors. In IEEE International Conference onAcoustics, Speech and Signal Process-
ing (ICASSP), pages 797–800, 2012.

[57] H. P. Moravec. Robot Spatial Perception by Stereoscopic Vision and 3D Evidence
Grids. Technical report, The Robotic Institute, Carnegie Mellon University, 1996.

[58] P. J. Neugebauer. Geometrical Cloning of 3D Objects via Simultaneous Registration of
Multiple Range Images. In Proceedings of the International Conference on Shape Modeling
and Applications, pages 130–139, 1997.

[59] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli,
J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-Time Dense Surface
Mapping and Tracking. In 10th International Symposium on Mixed and Augmented Real-
ity (ISMAR), 2011.

[60] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense tracking and
mapping in real-time. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 2320–2327, 2011.

[61] D. Nister, O. Naroditsky, and J. Bergen. Visual Odometry. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
2004.

[62] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, volume 153
of Applied Mathematical Science. Springer, 2003.

[63] N. Paragios, M. Rousson, and V. Ramesh. Non-Rigid Registration Using Distance
Functions. Computer Vision and Image Understanding, 89(2-3):142–165, 2003.

[64] V. A. Prisacariu and I. D. Reid. PWP3D: Real-time Segmentation and Tracking of 3D
Objects. International Journal of Computer Vision, 98(3):335–354, 2012.

[65] K. Pulli. Multiview registration for large data sets. In Proceedings of the Second Inter-
national Conference on 3-D Digital Imaging and Modeling, pages 160–168, 1999.

[66] B. Rasolzadeh, M. Björkman, K. Huebner, and D. Kragic. An Active Vision System for
Detecting, Fixating and Manipulating Objects in the Real World. International Journal
of Robotics Research, 29(2-3):133–154, 2009.

[67] C. Y. Ren and I. Reid. A Unified Energy Minimization Framework for Model Fitting in
Depth. In Proceedings of the 12th International Conference on Computer Vision, volume 2,
pages 72–82, 2012.

[68] M. Rouhani and A. D. Sappa. The Richer Representation the Better Registration. IEEE
Transactions on Image Processing, 22(12):5036–5049, 2013.

[69] M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Range Sensor Based Model
Construction by Sparse Surface Adjustment. In IEEE Workshop on Advanced Robotics
and its Social Impacts (ARSO), pages 46–49, 2011.

93

Bibliography

[70] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP Algorithm. In 3rd Inter-
national Conference on 3D Digital Imaging and Modeling (3DIM), 2001.

[71] C. Schroers, H. Zimmer, L. Valgaerts, A. Bruhn, O. Demetz, and J. Weickert.
Anisotropic Range Image Integration. In Proceedings of Pattern Recognition - Joint 34th
DAGM and 36th OAGM Symposium, pages 73–82, 2012.

[72] C. Schütz, T. Jost, and H. Hugli. Multi-Feature Matching Algorithm for Free-Form 3D
Surface Registration. In Proceedings of the Fourteenth International Conference on Pattern
Recognition (ICPR), pages 982–984, vol. 2, 1998.

[73] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In Proceesings of Robotics: Science
and Systems (RSS), 2009.

[74] S.-W. Shih, Y.-T. Chuang, and T.-Y. Yu. An Efficient and Accurate Method for the
Relaxation of Multiview Registration Error. IEEE Transactions on Image Processing,
17(6):968–981, 2008.

[75] R. Steffen, J.-M. Frahm, and W. Förstner. Relative Bundle Adjustment Based on Tri-
focal Constraints. In Proceedings of the 11th European Conference on Trends and Topics in
Computer Vision - Volume Part II, ECCV’10, pages 282–295, 2012.

[76] F. Steinbrücker, J. Sturm, and D. Cremers. Real-Time Visual Odometry from Dense
RGB-D Images. In 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), 2011.

[77] T. Stoyanov, A. Louloudi, H. Andreasson, and A. J. Lilienthal. Comparative Evalua-
tion of Range Sensor Accuracy in Indoor Environments. In Proceedings of the European
Conference on Mobile Robots (ECMR), 2011.

[78] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A Benchmark for the
Evaluation of RGB-D SLAM Systems. In Proceedings of the International Conference on
Intelligent Robot Systems (IROS), 2012.

[79] Y. Takase, N. Sho, A. Sone, and K. Shimiya. Automatic Generation of 3D City Models
and Related Applications. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, pages 113–120, 2003.

[80] C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color Images. In Sixth
IEEE International Conference on Computer Vision (ICCV), pages 839–846, 1998.

[81] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle Adjustment -
A Modern Synthesis. In Proceedings of the International Workshop on Vision Algorithms:
Theory and Practice, ICCV ’99, pages 298–372, 2000.

[82] D. Tubic, P. Hebert, and D. Laurendeau. A Volumetric Approach for Interactive 3D
Modeling. In Proceedings of the First International Symposium on 3D Data Processing
Visualization and Transmission, pages 150–158, 2002.

[83] B. Ummenhofer and T. Brox. Dense 3D Reconstruction with a Hand-held Camera. In
Pattern Recognition (Proceedings of DAGM), LNCS, 2012.

94

Bibliography

[84] J. Van Verth. Understanding Rotations. Technical report, Game Developers Confer-
ence, 2012.

[85] K. R. Vijayanagar, M. Loghman, and J. Kim. Real-Time Refinement of Kinect Depth
Maps using Multi-Resolution Anisotropic Diffusion. Mobile Networks and Applications,
19(3):414–425, 2014.

[86] T. Whelan, J. B. McDonald, M. Kaess, M. F. Fallon, H. Johannsson, and J. J. Leonard.
Kintinuous: Spatially Extended KinectFusion. In RSS Workshop on RGB-D: Advanced
Reasoning with Depth Cameras, 2012.

[87] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: A
Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems. In
Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for
Mobile Manipulation, 2010.

[88] Q.-Z. Ye. The Signed Euclidean Distance Transform and Its Applications. In 9th Inter-
national Conference on Pattern Recognition, volume 1, pages 495–499, 1988.

[89] C. Zach. Robust Bundle Adjustment Revisited. In European Conference on Computer
Vision (ECCV), 2014.

[90] C. Zach, T. Pock, and H. Bischof. A Globally Optimal Algorithm for Robust TV-L1

Range Image Integration. In Proceedings of the 11th IEEE International Conference on
Computer Vision (ICCV), pages 1–8, 2007.

[91] M. Zeng, F. Zhao, J. Zheng, and X. Liu. A Memory-efficient Kinectfusion Using Oc-
tree. In Proceedings of the First International Conference on Computational Visual Media,
CVM’12, 2012.

[92] M. Zeng, F. Zhao, J. Zheng, and X. Liu. Octree-based Fusion for Realtime 3D Recon-
struction. Graphical Models, 75(3):126–136, 2013.

[93] J. Zhang, M. Boutin, and D. G. Aliaga. Robust Bundle Adjustment for Structure from
Motion. In IEEE International Conference on Image Processing, pages 2185–2188, 2006.

[94] Z. Zhang. Iterative Point Matching for Registration of Free-Form Curves and Sur-
faces. International Journal of Computer Vision, 13(2):119–152, 1994.

[95] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 22(11):1330–1334, 2000.

[96] P. Zombo and R. Shannon. Advanced NDE Systems for Flexible Operation and Main-
tenance of Gas Turbine Components. Technical report, Siemens Power Generation,
Inc., November 2006. POWER-GEN International Conference 2006.

95

	Acknowledgements
	Abstract
	List of Abbreviations
	Introduction and Theory
	Introduction
	Motivation
	Problem Statement
	Outline of the Thesis

	Related Work
	Registration
	Pose Optimisation

	Background
	RGB-D Sensors
	Pinhole Camera Model
	Rigid Body Motion
	Twist Coordinates
	Augmented Unit Quaternions

	Signed Distance Fields
	Definition
	Generation
	Properties
	Fusion

	Proposed Method
	Signed Distance Field Registration
	Objective Function
	Registration Derivation for Camera Tracking
	Global Optimisation Derivation for 3D Reconstruction

	3D Reconstruction Pipeline
	Overview
	Depth Map Refinement
	Camera Tracking
	Global Pose Optimisation
	TV-L1 Minimisation for Final Model Generation

	Results and Evaluation
	Evaluation Methodology
	Test Datasets
	Evaluation Metrics for Camera Tracking
	Evaluation Metrics for 3D Object Reconstruction

	Experimental Results and Assessment
	Synthetic Data
	Industrial Quality Depth Data
	Kinect-like Depth Data
	RGB-D Benchmark
	Features

	Conclusion and Future Work
	Summary
	The Unified 3D Object Reconstruction Pipeline
	Contributions

	Future Work
	Bibliography

