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Manifold Learning

ome observations on popular
algorithms




Isomap

® Approximate geodesic distances 0 by
shortest path in nearest neighbor graph

® Preserve approximate geodesics
o min, =}, ;[6(yi,y;) —d(xi,x))]°

® Multidimensional scaling




Properties

® Only relies on accurate local distances
® Shortcuts in graph - very bad approximation
® Quality measure based on graph embedding

® Hard to detect

c
O
=
o
O
)
L
QO

Dimension




Properties

® Classical multidimensional scaling is not
minimizing

Zi,j[S(Yiayj) I d(xiaxj)]z

® Optimization based approaches

J. Kruskal, Multidimensional scaling by optimizing goodness of fit to
a nhonmetric hypothesis, Psychometrika 1964

A.Agarwal, J. Phillips and S.Venkatasubramanian, Universal Multi-

Dimensional Scaling, Conference on Knowledge Discovery and Data Mining
2010
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Laplacian Eigenmaps

® Given a manifold.#Z find functions f: .#Z +— R
such that [ ,||Vf(»)|*dy is minimized

® The low dimensional embedding is

X = [fl(y)v' ' 7fn(y)] c R”

® Small gradient implies that close by points
will be mapped close together




Properties

® Again only local distances important

® No quality measure of the embedding




Eigenfunction Issue

o Minimaing /|| V./()|dy

® Orthogonality constraint on f in function space
(not geometrically on manifold)

® Eigenvectors with higher frequency along same
extension on the manifold can have smaller cost



Eigenfunction Issue

® B is orthogonal to A (in function space)

® Cost of B less than C (the desired eigenvector)

Samuel Gerber, Tolga Tasdizen, Ross Whitaker, Robust Non-linear Dimensionality
Reduction using Successive 1-Dimensional Laplacian Eigenmaps, ICML 2007




Conditional Expectation
Manifolds

Manifold learning as unsupervised
non-parametric model fitting



Principal Curves/Surfaces

Curve through the middle of a density
y =g(s)+n(s)

T. Hastie, W. Stuetzle, Principal curves
Journal of the American Statistical Association 1989




Principal Surface Definition

® Minimal orthogonal projection onto surface
A(y) = maxg{s: ||y — g(s)|| = infs|[y — g(5)||}

® Principal surface iff conditional expectation
of the projection equal to surface

E[Y|A(Y) = X]| = g(x)




Principal Surface Estimation

® Principal surfaces are extremal points of
(objective function) E[|[Y —g(A(7))|]

® Pick a parametrized surface model g(s)
® Optimize over parameters of g(s)

® Unfortunately principal surfaces are all
saddle points of E[|lY —g(A(X)|*

® Projection is a non-linear optimization
problem



Conditional Expectation
Manifolds (CEM) Y

® Define a coordinate mapping f

® Model surface g as conditional
expectation of coordinate mapping. g(s) =E[Y|f(Y) =]

® Optimize coordinate mapping




CEM Estimation

® Coordinate mapping as kernel regression

v Kn()’ }')
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Samuel Gerber, Tolga Tasdizen, Ross Whitaker "Dimensionality Reduction
and Principal Surfaces via Kernel Map Manifolds", (ICCV 2009)




CEM Estimation

® Conditional expectation estimated with

kernel regression
g(s) =E[Y|f(Y)=s]

XXX XXX X @ XX S

Samuel Gerber, Tolga Tasdizen, Ross Whitaker "Dimensionality Reduction
and Principal Surfaces via Kernel Map Manifolds", (ICCV 2009)




Some results

® Effect of optimization

Initial MSE 8.6 Optimized MSE 2.6



Some results

® | 965 images of different facial expression (20x28)

svsslaslaslacls s'a r..a a'.: ;’: -

o el

| @ &'3 5'2 s'z s.a s'z e'as'ac'ac’zc

- W -

L




Work in Progress

® Saddle point property of extrema is
problematic for model selection
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Work in Progress

® Conditional expectation manifolds pave
way for other objective functions
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o, @G G q

w@ = -

-15 -1.0 -05 0.0 0.5 . 0 20 40 60 80 100
Y1 iteration




Brain Population Analysis




Motivation

® Proof of concept

® Conditional expectation manifold for brain
Images

® Non-linearity in shape space

® Natural extension at the time from single atlas to
multiple atlases to continuum

® Simplify statistics on shape spaces



Measuring Shape Differences

® Fuclidean space does not capture changes in shape

® Distance based on measuring length of transformation




Large Deformation Diffeomorphic Metric
v(¢(r,7),7)
® Diffeomorphic transform ¢(r,1)
O(rt) =r+ fov(9(ro),0)dr  P0Y Lo
® Riemannian metric ||V(7, T)||p (0=avV+(1-a))
® (Geodesics on diffeomorphic transformations

d(e,9)? = min, f} [ollv(r.7)llodr d

® |nhduces metric on images

Ay, = min, Jy [v(r 7)o d7 2
suchthat Jo[yi(9(5, 1)) — () [ dr =0



Manifold in Brain Space

Space of Smooth Images

Frechet mean on
data manifold
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Manifold in Brain

Data set:
spiral segments

Diffeomorphic mean




Approximating the
Diffeomorphic Metric

® For small deformations work in tangent space

O(r,1) =~ v(r,0) = u(r)

® Distance defined by

dulyi,yj)? = min, fo|u(r)|3 dr
suchthat fy|yi(r+u(r)) —y;(r) |3 dr < &

® For symmetry
d(Yiayj) — %(da(yiayj) _I_dd(ijyi))



Manifold Representation

® Represent manifold as conditional
expectation of some function

g(x) =EY|f(y) = x|

® Non euclidean space use Frechet mean

Ym = argmin,c , Y wid(y, vi)®

. n Kx(||x—f(y;
2(x) = argmin, ¥ g o Hrd (043

B. Davis, P. Fletcher, E. Bullitt, S. Joshi, Population shape
regression from random design data, ICCV 2007




Manifold Representation

® Compute embedding based on pairwise
distance matrix (isomap)

® Define coordinate mapping based kernel
map manifold approach

d(%)’l))
ty) = Xic1 57, Kydton )




Manifold Representation

® |n all steps:

® |arge distances have negligible effect

(Y)’l))
t(y) = Xiz 12 K, (d(ry )

2(0) = argminy 1| g S S d (0, )°



Results

e OASIS data set MMSE Histogram
® 4]6 subjects,age 16 to 80

® |00 subjects diagnosed with
mild to moderate dementia

® ADNI data set
® |56 Subjects,age 57 to 88

® 38 normal, 84 MCI,
34 early AD




OASIS 2D Embedding




Manifold Fit - OASIS

® Measure reconstruction error
® Comparison to PCA
® Comparison of different metrics

® Scale by average nearest neighbor distance

Y.id(g(f(i).yi)
Y.id(nn(y;),y;)

CITOI =

Manifold Model
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Manifold Fit - ADNI

Projection Left 016t8v01umeb
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Reconstructed volumes




Statistical Analysis - OASIS

® Linear regression on age, MMSE, CDR
® Comparison to PCA and age as predictor

® Controlled for age - BIC to select best model

Model t Residual | R? F | p-value

age = ag+ > qa;l; | 41.5 /-12.5 /4.2 /-7.1 /] -8.7 10.5 0.82 | 404.9 < €
age = ap + Yy_q GT; -39.3 / 10.0 / -13.0 <e
MMSE = ag + ajage -4.0 3.59 | 0.06 | 15.82 | 9.3¢-05
MMSE = ag + a1l4 -6.6 3.40 | 0.16 | 43.13 | 3.3e-10

MMSE = a¢ + a;74 6.8 3.36 0.18 | 50.3 | 1.6e-11
CDR = ay + ajage | 12.0 0.27 0.25 | 144.5 <€
CDR = ag + a1l4 14.9 0.26 0.34 | 223.9 <€
CDR = q¢ + a174 | -15.8 0.25 0.36 | 248.5 <€




Statistical Analysis - OASIS

® Restricted to subjects age above 60

Model t

dge—ao+zz_1az 01/20 4.3 0.18
MMSE = ag + aiage —1 0
MMSE = ap + a1l1 | -4.0

MMSE = ap + a1 4.6
CDR = ag + a;age 3.5
CDR = ap + a1l1 4.9
CDR = ap + a1 -0.D

Residual | R?

0. 008

F | p-value
13 3 \ 6.1e-6
1. Oe-

0.12 |109\ 12e-4

0.15
0.09
0.16
0.20

20.9 | 1.2¢-5
11.2 | 1.1e-3
24.1 | 3.0e-6
30.0 | 2.4e-7



Statistical Analysis - ADNI

Model t Residual \ R? F | p-value
age =ag +ayly + 3o ,a;l; | 5.41 /-2.24 / -2.50 / 55 | 0.21 7.3e-8
age = ag + Y. G;T; 4.83 / 2.34 5.7 0.16 | 14.39 | 1.8e-6
MMSE = ay + ajage 0.65 2.43 | 0.003 0.52
MMSE = ag + a1l4 -2.53 2.39 | 0.04 0.01

MMSE = qg + a12; -2.83 2.37 | 0.05 0.005
diagnosis = ag + a;age -0.74 0.68 0.003 | 0.54 0.46

diagnosis = ag + a1l; 2.54 0.67 ‘ 0.04 | 6.43 | 0.012
diagnosis = ag + a1T1 + agTg 3.55 / -3.30 0.64 ‘ 0.13 | 11.74 | 1.8e-5




Reconstructions -ADNI




ADNI - Statistics

PCA regression residual
PCA regression residual

4 T35 05 0 05 1 15
Manifold regression residual Manifold regression residual

) MMSE (b) diagnosis

) MMSE=21, CDR=3 ) MMSE=30, CDR=1 ) MMSE=24, CDR=3




Extensions

® Different Metrics!?
® Transformation based metric is expensive

® No optimization of conditional expectation
manifold

® Embedding/Statistics including metric tensor.
® Adding supervision

® Fit manifold with respect to a clinical predictor
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Thoughts on Manifold Learning

® For which applications / tasks is manifold learning
effective!?

® Purely unsupervised tasks are rare
® Exploratory analysis

® |n supervised settings:
® Manifold learning as regularization
® Feature extraction

® Stratified, non flat-able manifolds and detection of
non-manifold structure



