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Figure 1. (a) illustrations of the offset pair for features f . (b) illus-
trations of two reference vectors from the skeleton.

The supplementary material for the paper Toward User-
specific Tracking by Detection of Human Shapes in Multi-
Cameras consists of this document and the accompanying
video. It provides details of feature vectors f , as well as the
way of re-orienting meshes.

1. Details of volumetric features f
In this section, we explain how to construct our volu-

metric features f . As depicted in Fig. 1(a), f operates on
the normal field N, characterizing the local geometries of
the current voxel v (blue).1 Let κ denotes the index of fea-
ture channel. The first 6 channels (f0, . . . , f5) involve two
neighboring voxels (green), while the last two dimensions
(f6, f7) involve only the current voxel. Neighboring vox-
els are selected based on a pair of offsets ψ = (o1,o2) ∈
Ω3×Ω3 (red vectors), either aligned with a local coordinate
frame or not. Same as in [2], each offset has 50% probabil-
ity to be 0, where we encode the geometry of the current
voxel v itself.

Although the length of f is only 8, during training in
practice there are 8×Nψ possibilities to try out, which is ap-
proximately 120k in our experiments. In each branch node,

1Since we intend to describe surface geometries, current voxels v are
always surface voxels vsuf, as in Sec. 4.2 of the main paper. In this sup-
plementary document, however, we drop the subscript in order to keep
notations uncluttered.
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v1 vout vsuf vin

vout |n|∗ + 8 n1 · n + 2 |n|∗ − 4
vsuf n · n2 + 6 n1 · n2 n · n2 − 6
vin |n|∗ + 4 n1 · n− 2 |n|∗ − 8

Table 1. The response table of f0. n = N(v), n1 = N(v1) and
n2 = N(v2). |n|∗ represents a randomly chosen dimension of n.

the offset pair ψ and the feature channel κ that maximizes
the information gain (Eq. 3 in the main paper) are saved.
During testing, one does not have to prepare the whole one-
hundred-thousand-dimensional vector to traverse the forest,
since the calculation of each dimension is independent.

1.1. Extended dot product of normals

Let v1 and v2 denote the two neighboring voxels. We
first consider the second-order information between them,
which can be roughly measured by the dot product of nor-
mals: N(v1) ·N(v2) ∈ [−1, 1]. Nevertheless, this opera-
tion is only valid when both neighboring voxels lie on the
surface, which is not always the case. Moreover, it is known
that higher order information is less reliable in 3D data. We
therefore include the zeroth-order information (surface oc-
cupancies), and extend the dot product to a more general
response table as in Table 1.

Let n, n1, and n2 denotes the normals of the current
voxel v, v1 and v2, respectively. Whenever one of the
neighboring voxels is not a surface voxel, we replace its
normal with the one from the current voxel, n, and perform
dot product. If neither v1 nor v2 lies on the surface, we
consider a randomly chosen dimension of the n as results.
Afterwards, we add a scalar constant to the result, distin-
guishing different cases of surface occupancies. The first
dimension of the feature f0(v1,v2) follows Table 1.

1.2. Difference of VNF in local cuboids

To further exploit the normal field N, we open a cuboid
around v1 and v2 respectively, subtract two cuboids, and
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sum up the results over the cuboid:

s(v1,v2) =
∑
i∈V

(N(v1 + i)−N(v2 + i)) , (1)

where V represents the set of neighborhood indices. In our
implementation it has the size of 5 × 5 × 5. Eq. 1 leads to
a vector s = (sx, sy, sz) ∈ Ω3. The next five dimensions of
the feature f can thereby be defined accordingly:

f1(v1,v2) = sx, (2a)
f2(v1,v2) = sy, (2b)
f3(v1,v2) = sz, (2c)
f4(v1,v2) = ‖s‖2, (2d)
f5(v1,v2) = sx + sy + sz. (2e)

Recall that we use ±(2, 2, 2) in the normal field N to
indicate voxels outside and inside the mesh respectively.
These indicators are included in Eq. 1 and 2, and hence
f1 . . . f5 by definition also contain the zeroth-order infor-
mation of shapes.

1.3. Normalized heights and lengths

The last two feature dimensions take only the current
voxel v into account, i.e. f6(v) and f7(v). They are the
normalized height (f6) and normalized length (f7), respec-
tively. Let v̂ denotes the normalized voxel coordinate w.r.t.
the bounding box of the mesh, and the operator | · |∗ takes
the ∗-coordinates of the vector. Typically f6 corresponds
to |v̂|z , and f7 corresponds to |v̂|x. Note anyway that this
could vary due to different recording settings.

2. Re-orient meshes

In this section we describe how to orient meshes into a
canonical direction by using the underling skeletons. We
consider two bone vectors, Torso-LShoulder, and Torso-
RShoulder since they usually remain stable even when
limbs have undesirable deformations. As illustrated in
Fig. 1(b), the first reference vector (blue) is the cross prod-
uct of two bones, while the second one (green) is the sum
of them. We align the two reference vectors respectively to
x-axis and z-axis, canceling the rotations of the subjects.

3. Error vs. ICP-itr.

In Table 2, we point out the advantage of our method
over surICP. With the correspondences from VNF-forest
framework, ICP attains similar accuracy but requires less
iterations to converge. This demonstrates that, compared
with using results of previous frames as initializations, our
method is capable of providing better ones.

ours + ICP surICP [1]
error # ICP-itr. error # ICP-itr.

Crane 8015 17 8138 20
Jumping 7976 16 7648 21
Bouncing 7569 34 7826 44
Handstand 9767 27 9963 60

Table 2. Average silhouette overlap error in pixels, and the average
ICP-iterations (itr.) of 4 sequences.
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