

HIGH PERFORMANCE OPTICAL TRACKING FOR MEDICAL APPLICATIONS

AGENDA

1. FRAMOS

- a. Company & Department
- b. Medical Partners

2. Tracking

- a. Explanation & Motivation
- b. Sytems & Solutions

3. Medical Applications

- a. Diagnostic Sonography
- b. Nuclear Medicine
- c. Assistive Movement Therapy

4. Conclusion

FRAMOS BUSINESS UNITS

Design support, hardware and software development (evaluation & support, FPGA programming and camera development)

FRAMOS IMAGING SYSTEMS

Focus

Logistics

Medical

Research & Development

FRAMOS COOPERATION PARTNERS

© FRAMOS 2015

FRAMOS COOPERATION PARTNERS

© FRAMOS 2015

TRACKING

In a nutshell

- Arbitrary motion = 6 DOFs
 - Position
 - Distance (x,y,z)
 - Rotation
 - Angles (a,b,c)
 - Pose = Position + Rotation
- > Tracking = Continuous pose measurement

TRACKING

Requirements for medical applications

- Arbitrary motion
- High-precision
- Real-time
- Robust recognition
- Intuitive handling
- Individual objects
- Online teaching
- Communication

A MEDICAL MOTIVATION 💸

Needle Tip Tracking

 Needle placement difficult with 2D ultrasound (US)

target

[1] B. Ihnatsenka et al. IJSS 2010

MEDICAL EXAMPLE

Depth

Needle Tip Tracking

Show needle position on ultrasound image

MEDICAL EXAMPLE

Depth

Needle Tip Tracking

Show needle position on ultrasound image

AVAILABLE SOLUTIONS

Electromagnetic Tracking

- Pros
 - No line of sight restrictions

Cons

Limited accuracy [mm]

Small working volume

[66 cm away from transmitter]

Wiring: sensor power supply

- Complex sensors
- Lack of reliability
 - Unintuitive error source analysis [e.g. metal]
- Electromagnetic interference
 - Pacemakers ...

10 x 10 x 10 cm³ 2.3 kg

[1]

AVAILABLE SOLUTIONS

Optical Tracking

- Pros
 - High accuracy [~ 0.3 mm]
 - Markers: passive / active / disposable
 - Reliability
 - Intuitive error analysis
 - No interference
 - Large working volume
 - [up to 3 m in depth]

- Cons
 - Often: Strong line of sight restrictions
 - Often: Bulky rigid mounts
 - Often: Fixed marker geometry

AVAILABLE SOLUTIONS

FRAMOS High Performance Optical Tracking Systems

- Pros
 - Very high accuracy [10-90 µm]
 - Markers: passive + active + disposable
 - Reliability
 - No interference
 - Very large working volume
 - Robust recognition
 - Individual marker set-up
 - Independent of object geometry
 - Intuitive handling
 - Scalable to custom requirements
 - Outside-in & inside-out solutions

- Cons
 - Partial line of sight restrictions
 - Often: Bulky rigid mounts
 - Often: Fixed marker geometry

3D POSE MEASUREMENT

FRAMOS OTS

Hardware & Accuracy

- Cost-efficient passive markers
- Self-adhesive, retro reflective
- Individual stereo camera setup

FRAMOS OTS

Software & Application

APPLICATION FIELDS

Medical Tracking Solutions for

- Robot-guidance
- Surgical tool-navigation
- 3D measurements
- Augmented Reality / Virtual Reality
- Head Mounted Displays
- Motion Capture

- [1]: R-Design Studio. GOM. 2015-06-08
- [2]: Surgical Robot System. University of Bern. 2015-06-08
- [3]: H.-C. Schneider e al. Robot Surgery 2010
- [4]: Augmented Reality in Medicine. CAMP. 2010 [5]: P. Fallavollita. CAMP. 2014

3D ULTRASOUND FROM 2D IMAGES

[1]

OTS - 3D ULTRASOUND

Upgrade conventional ultrasound to 3D

[1]

3D poses

[1] Curefab CS, CUREFAB, 2015

[2] Carotid Artery Duplex Scan, J. H. Medicine, 2015

OUTSIDE-IN & INSIDE-OUT TRACKING

SENSOR FUSION - GAMMA & US

Sentinel Lymph Node Biopsy

- Current Workflow
 - Handling of 2 devices
 - Two independent images
 - Biopsy with ultrasound

Robot-guided multimodal imaging

Locate Sentinel Lymph Node

Robot-guided multimodal imaging

Perform Biopsy

Proposed workflow

- Advantages
 - Image fusion
 - Multi-modal visualization
 - Positioning of gamma cam
 - Collaborative device
 - Functional information in OP
 - Reduce number of open SLN resections

MOVEMENT THERAPY AFTER STROKE

[2]

Stroke

- Poor blood flow in brain.
- Cell damage
- ~17 Mio incidents p.a.
- 33 Mio affected patients
- 80% hemiparesis
- > Rehabilitation therapy

[1]

MOVEMENT THERAPY AFTER STROKE

Therapeutic Measures

- Neurological therapeutics
- Constraint-induced movement
- Mirror therapy
- Repetitive practice
- Re-education of movements
 - Motion training
 - Immediate & long term

> Patient participation very important

[1]

OTS - ASSISTIVE MOVEMENT THERAPY

Motion Training

- Previous Systems
 - Joystick controlled
 - Exoskeletons

Bi-Manu Track

T-WREX Exoskeleton

- Our Approach
 - Contactless with computer vision
 - Optical tracking controlled
 - Collaborative robot movement therapy

[1] L. Marchal-Crespo et al. JNER. 2009

OTS - ASSISTIVE MOVEMENT THERAPY

Proposed treatment

- Camera-in-hand
- Sleeve markers
- Guiding arm
- Robot supports deficient arm
- Natural control
- Better rehabilitation
- Positive feedback

OTS - ASSISTIVE MOVEMENT THERAPY

CONCLUSION

- FRAMOS
 - Company & Medical Partners
- Tracking solutions
 - Concepts (EM, Optical)
 - Advantages & Drawbacks
 - High Performance OTS
 - Inside-out & Outside-in.
- Wide range of medical applications
 - Navigation (e.g. medical instruments / sensors)
 - Visualization (funtional information / additional localized data)
 - Collaboration (assistive robotics)

THANK YOU!

Vielen Dank!

n le enable Jou!

Hall 3 E38 www.framos.com b.busam@framos.com

OTS – IMAGE PROCESSING

Algorithm – 2D/3D Object recognition

- Acquire images
- > Find object (ROI)
- Calculate marker positions
- > Fit contours
- Compute centres
- Triangulate 3D points

© FRAMOS 2015 34 / 32

TRACKING

Available Solutions

- EM Tracking Systems
 - Oscillating fields
 - Quasistatic fields
 - Passive Transponder Systems

- Optical Tracking Systems
 - Videometric Tracking
 - IR-based Tracking
 - Active Trackers
 - Passive Trackers
 - Laser Tracking