

# Camera Pose Filtering with Local Regression Geodesics on the Riemannian Manifold of Dual Quaternions

JOHNS HOPKINS
WHITING SCHOOL
of ENGINEERING



Benjamin Busam [b.busam@framos.com]<sup>1,2</sup>, Tolga Birdal<sup>1,3</sup>, Nassir Navab<sup>1,4</sup>

- 1. Computer Aided Medical Procedures, Technische Universität München, Germany
- 2. FRAMOS GmbH, Germany 3. Siemens AG, Germany
- 4. Computer Aided Medical Procedures, Johns Hopkins University, US

# Smooth Filtering of Rigid Motion Sequences

Tasks such as 6D object tracking and camera pose estimation can produce noisy and inaccurate data series. We present a parameter-free moving window approach to robustly filter these pose sequences exploiting the structure of the dual quaternion space by:

- 1. Identifying the pose series with consecutive points on the Riemannian manifold of unit dual quaternions  $\mathbb{DH}_1$
- 2. Local linearization of the 6D pose space  $\mathbb{DH}_1$  around a support point from the sequence
- 3. Trajectory smoothing by robust linear regression on the tangent space

### Quaternion and Dual Quaternion Space

A quaternion  $q\in\mathbb{H}$  can be used to describe a rotation in 3D space with the sandwich product [1]

$$\mathbf{p} \mapsto \mathbf{q} \cdot \mathbf{p} \cdot \bar{\mathbf{q}}$$

where the point quaternion  ${\bf p}$  depicts the point of interest and the rotation quaternion  ${\bf q}$  represents the rotation. A rigid body motion is usually treated as  $\mathbb{H}_1 \times \mathbb{R}^3$ .

A dual quaternion  $\mathbf{Q} = \mathbf{r} + \varepsilon \mathbf{s} \in \mathbb{DH}$  with  $\mathbf{r}, \mathbf{s} \in \mathbb{H}$  can be used to describe a rigid motion with the sandwich product [2]

$$P \mapsto Q \cdot P \cdot \hat{Q}$$

where the dual pure quaternion  $\mathbf{P}$  depicts the point of interest and the unit dual quaternion  $\mathbf{Q}$  represents the displacement. Rotation and translation are treated jointly in  $\mathbb{DH}_1$ .

 $\mathbb{H}_1$  and  $\mathbb{DH}_1$  are Lie groups. Exponential and logarithm maps can be obtained via parallel transport [3].



## Robust Motion Stabilization

A motion can be interpreted as a pose trajectory in  $\mathbb{DH}_1$ . We perform a principal component local regression on the tangent spaces along the pose sequence [Algorithm 1]:

- 1 Set local window around  $x_i$
- ② Map points  $\mathbf{x}_i^k$  to tangent space  $T_{\mathbf{x}_i} \mathbb{DH}_1$
- ③ Linear regression on  $T_{\mathbf{x}_i} \mathbb{DH}_1$  and project  $\mathbf{x}_i$  3.1. PCA 3.2. wPCA 3.3. IRLS [Algorithm 2]
- (4) Map  $\mathbf{x}_i^{\text{proj}}$  back to

 $\label{eq:Algorithm 1 Manifold Regression.} \begin{tabular}{ll} \textbf{Algorithm 1 Manifold Regression.} \\ \textbf{Require: Set of poses } \textbf{X} &= \{\textbf{x}_i\}, \text{ Prior weights } \textbf{w}_0 &= \{\textbf{w}_k\} \text{ for local window } \Omega_i \\ \textbf{Ensure: Filtered poses } \textbf{X}^f &= \{\textbf{x}_i^f\} \\ \textbf{X}^f &\leftarrow [\ ] \\ \textbf{for } \textbf{x}_i &\in \textbf{X} \text{ do} \\ \textbf{X}_{\Omega} &\leftarrow \{\textbf{x}_k\} &\in \Omega_i \\ \textbf{X}_{\Omega} &\leftarrow [\textbf{log}_{\textbf{x}_i}(\textbf{X}_{\Omega}) \\ \textbf{X}_{\Omega}^{proj} &\leftarrow \text{irls.wpca}(\textbf{X}_{\Omega}^t, \textbf{w}_0) \\ \textbf{x}_i^f &\leftarrow \text{exp.}_{\textbf{x}_i}(\textbf{X}_{\Omega}^{proj}(i)) \\ \end{tabular}$ 

10.50 am Oral Session

 $\mathbf{x}_i^f \leftarrow \exp_{\mathbf{x}_i}(\mathbf{X}_{\Omega}^{\operatorname{proj}}(i))$   $\mathbf{X}^f \leftarrow \mathbf{X}^f \cup \mathbf{x}_i^f$ end for

Algorithm 2 irls.wpca : IRLS for weighted PCA.

Require: Local set of poses  $\mathbf{X} = \{\mathbf{x}_i\}$ , Kernel size K, Prior weights  $\mathbf{w}_i = \{\mathbf{w}_i\}$ , i Herations  $\mathbf{n}$ , Small  $\delta$ Ensure: PCA line I with projections  $\mathbf{X}^{2\pi i 0}$   $\mathbf{w} \leftarrow \mathbf{w}_0$   $\{\mathbf{X}^{\pi i 0}, \mathbf{I}\} \leftarrow \text{weighted.pcn}(\mathbf{X}, \mathbf{w})$   $\mathbf{w} = \mathbf{I}(\mathbf{w}_i)$ with  $\mathbf{w}_i = 1/\text{max}\left\{\delta, \frac{1}{K}\sum_{k=1}^K \left\|\mathbf{x}_i^k - \mathbf{x}_i^k\right\|^{2\pi i 0}\right\}\right\}$   $\mathbf{w} \leftarrow \mathbf{w} \cdot \mathbf{w}_0/\|\mathbf{w} \cdot \mathbf{w}_0\|$   $\Rightarrow \text{Dampen the estimates.}$ end for



[1] R. Mukundan, Quaternions: From classical mechanics to computer graphics, and beyond. Asian Technology Conference in Mathematics. 2002.

[2] A. Torsello, E. Rodola, A. Albarelli. Multiview registration via graph diffusion of dual quaternions. CVPR 2011.

[3] J. Gallier. Notes on differential geometry and lie groups. University of Pennsylvannia 2017.

[4] B. Busam, M. Esposito, B. Frisch, N. Navab. Quaternionic Upsampling: Hyperspherical Techniques for 6 DoF Pose Tracking. 3DV 2016.

[5] R. Newcombe, I. Shahram, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohi, J. Shotton, S. Hodges, A. Fitzgibbon. KinectFusion: Real-time dense surface mapping and tracking. ISMAR 2011.

Our camera poses are calculated via ICP registration only with the depth images. The motion filter is applied afterwards.

# **Experimental Evaluation**

#### Synthetic Tests

The manifold aware filter methods are tested both with separated translation and quaternion as well as jointly on dual quaternion space and compared to a Kalman filter.



> Dual space formulation robustifies smoothing

#### Synthetic Tests

Testing is performed on the stereo tracking dataset [4] for natural hand movements in cooperative robotics.

 No dual space gain in case of reliable, accurate poses



#### Kinect Fusion [5]



# Conclusion

- Differential geo. method gives non-parametric smoothing
- Outlier-aware method, no explicit noise model needed
- Dual guaternion formulation robustifies filtering process







