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Abstract. This paper presents a special CNN architecture which set the
state-of-the-art of three different computer vision tasks at the same time,
notably depth and surface normal prediction in monocular images as well
as semantic labeling of RGB(-D) data. The CNN architecture operates
at multiple scales, each of which also incorporates the output from the
previous scale for progressive prediction refinements. This paper embeds
the approach into the context of related work, presents the proposed
architecture and shows selected results.

1 Introduction

Within the last decade, the large-scale availablity of low-cost depth sensors gave
rise to novel methods for 3D scene understanding, which until then was re-
stricted to stereo-view or motion approaches[21]. RGB-D datasets such as the
NYUDepth[22] dataset were constructed and machine learning for physical ge-
ometry regression from single RGB images alone finally became possible thanks
to the availablity of training data. Consequently, many methods for solving the
challenging, deeply connected tasks of depth[11, 12, 3, 1, 15] and surface normals
estimation[5, 18, 25, 4, 6] from monocular images have been proposed. Further,
the availability of RGB-D data lead to novel approaches for semantic labeling[27,
10, 24, 13, 22, 2, 19, 8, 26, 9], which also incorporate depth information. While in
particular the tasks of depth and normals prediction from RGB images are ill-
posed problems and thus not completely accurate, such predictions can provide
valuable information for other applications such as human pose estimation or
robot navigation[1, 3, 22]. Recently, there has been one particular method which
outperformed any of the previous contributions in all of the aforementioned
tasks. The mentioned method is based on a single multi-scale CNN architecture
which can easily be adapted to the different tasks with minor modifications.
This report is an attempt to first give an overview of related work and briefly
explains the concept of CNNs. In section 4, the proposed CNN architecture, the
modifications, training and results are presented in greater detail.



2 Related work

A first attempt towards automatic depth prediction from single-view outdoor
images was made by Hoiem et al. [11] with an automatic photo pop-up algorithm,
in which they categorize parts of an image into three different geometric classes:
ground, vertical and sky. “Cutting and folding” along the boundaries of the
detected vertical regions yields the photo pop-ups. However, this approach is
restricted to simple outdoor scenes and also not very accurate. Also in 2005,
Saxena et al.[20] made a more sophisticated attempt for inferring depth from
single monocular images, both indoor and outdoor. In their Make3D framework,
they model the relationship between a variety of image features and depth maps
directly as a Markov Random Field. In a later publication (2007), they improved
their model and enhanced the input features. In 2012, Karsch et al.[12] proposed
a method for automatic depth map recovery for indoor scenes based on non-
parametric sampling. Their idea does not require any training. Instead, they rely
on a database of RGB-D images where they choose samples from. A prediction
is obtained by finding the best sample consensus based on minimizing an energy
function. Ladickey et al.[15] argue that “there are mutual dependencies between
the visual appearance of a semantic class and its geometric depth” and thus
suggest to solve the problem of semantic labeling in RGB images and depth
prediction jointly with a “semantic depth classifier”. Baig et al.[1] proposed a
method closely related to the method of Karsch et al. In contrast, Baig et al. do
not rely on a dataset of complete RGB-D samples, but rather on two dictionaries
containing compressed representations of images and depth. Based on a simple
linear mapping between the dictionary-dependent representations of RGB and
depth images, they can infer depth. Ladickey et al.[18] believe that the direct
recovery of depth maps from monocular images is of limited use and suggest
to rather predict surface normals. For this purpose, they propose a continuous
boosting framework which regresses from both contextual features and segments
to surface normals. In preceding work, Fouhey et al.[5] proposed a framework
for surface normal estimation on indoor RGB-D data with help of learned 3D
primitives that are both easy to recognize and carry useful 3D information. In
[6], Fouhey et al. fuse these 3D primitives with a global optimization on a grid
obtained from rays through the vanishing points of a scene in order to obtain
more accurate surface normals. Meanwhile, the computer vision community has
evolved a lot in the field of semantic labeling. While earlier approaches were based
on heavy optimization problems or classifiers trained on handcrafted features,
state-of-the-art results have been achieved with CNN architectures. For instance,
both Couprie et al. and Farabet et al.[2, 4] proposed CNN architectures applied
to the input at different scales, building a consensus on the separate predictions
afterwards. Gupta et al. argue that raw depth features should be substituted by
a special geocentric depth encoding, which together with a CNN would lead to
better semantic labeling. Similar to Couprie et al., Eigen et al.[3] also proposed
a multi-scale architecture in 2014, however for the task of depth prediction from
monocular images. Their method consists of a network making global predictions
whose output is fed into a second network specialized for making more local



predictions, in combination with a special scale-invariant loss-function. This work
can be considered the predecessor of the outperforming architecture presented
in this report.

3 Convolutional Neural Networks

Deep CNNs have first been introduced in 1998 by LeCun et al.[16] for docu-
ment recognition and since then have set the state-of-the-art in many fields.
Just recently they also set the state of the art in various computer vision tasks
such as image classification[14], object detection[7] or stereo matching[28]. CNNs
enhance the concept of neural networks by so called convolutional layers, and
sometimes by pooling layers for subsampling. In contrast to ordinary neural net-
works, where each neuron is fully connected to all neurons of the previous layer,
convolutional layers introduce a sparse, more local connectivity, which allows for
deeper architectures and faster training. The term “convolutional” is coined by
the fact that the learned weights of these sparse connections can be considered
the coefficients of filters subject to convolution operations. This convolutional
property renders CNNs particularly suited for computer vision tasks.

4 The Contribution

Eigen and Fergus propose a single, versatile, multi-scale CNN architecture which
can be adapted to different tasks with minor modifications. A trained model
starts off with a coarse, global prediction from the entire input image and then
progressively makes local refinements of the predictions at successive scales.

4.1 Architecture

The proposed architecture (Fig. 4.1) consists of overall 3 different scale networks
which progressively refine predictions based on the original input and the pre-
dictions from the previous scale. When feeding the models with an input image
at the size of 320x240px, at the last scale an output at approximately half the
input size is returned.

Scale 1 is an AlexNet[14] network which is used to compute multiple feature
maps based on the entire image field of view. There are multiple convolution and
pooling blocks which extract features and consecutively reduce the input size, as
well as two fully connected (FC) layers at the end. The last FC layer outputs 64
feature vectors which are reshaped to the size of 19x14, which is approx. 1/16
of the input size.

Scale 2 is intended to do mid-level predictions. The original input image is
first convolved and pooled with 32x9x9 filters, which leads to 32 feature maps
with a size of 74x55. These feature maps are augmented with the up-sampled 64
feature maps from scale 1, leading to total 96x74x55 feature maps. The remaining
layers of this scale are fully convolutional, such that the output is of the resolution



Fig. 1. Illustration of the multi-scale CNN architecture proposed by Eigen and Fergus

74x55xC. The number of output channels C of the prediction depends on the
task and can be adjusted, of course.

Scale 3 acts similar to scale 2. The input image is again first convolved and
pooled with 32x9x9 filters, but at a lower stride. This results in feature maps at
the size of 147x109px, which are again augmented with the up-sampled output
from scale 2. The resulting feature maps are subject to several more convolutions.
The final output is of the size of 147x109xC, where C is the number of channels,
respectively.

What renders this architecture “generic” is the fact that in order to adapt
it to different tasks, simply the loss function has to be exchanged and a few
parameters have to be tweaked.

4.2 Depth Prediction

The goal of the depth prediction task is to infer the absolute depth of each pixel
in an RGB image. For this task, the authors set C = 1 and train the model with
the following elementwise loss:
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, where di = log( D
D∗ ) with D being the predicted and D∗ being the ground

truth depth map. The first term is the l2-error which is to be minimized. In order
to see the impact of the second term more clearly, it has to be split up. The
split yields a second order l2-error term which will dampen the actual l2-error.
The second term of the split can be considered a scale consistency penalizer:
it will impose a heavy penalization on the loss if di and dj , i.e. two different
relative pixel-errors being compared, have different signs, i.e. when one pixel
is in front of its corresponding groundtruth pixel and the other one is behind.
On the other hand, it awards the loss when both pixels being compared have
the same sign, i.e. are consistent in scale. The third term of the loss enforces a
spatial consistency and tries to preserve local structures by matching edges of
predictions and groundtruth.

4.3 Surface Normals Prediction

The goal of the surface normals task is to predict a 3-component vector at each
pixel of an image, i.e. its x,y and z components. For this task, the authors
propose a simple loss function based on the dot produt of the predicted and the
groundtruth normal vector:

Lnormals(N,N∗) = − 1
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In fact, the elementwise loss compares the directions of the predicted to the
corresponding groundtruth normal. Notably, for this task the authors set C = 3.

4.4 Semantic Labeling

For semantic labeling, i.e. predicting a class label for each pixel in an image,
the authors make use of a standard softmax-classifier in conjunction with the
cross-entropy loss. The latter plays nicely together with the softmax activation
since it prevents vanishing gradients in sigmoid activations that originally would
lead to a dramatic training slow down.

Lsemantic(C,C
∗) = − 1
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For the semantic labeling task, the authors make some changes to the ar-
chitecture. At first, the input of scale 2 and 3 is augmented with groundtruth
depth and normals for these experiments. However, Eigen and Fergus do not
simply convolve all input channels together with a single set of filters, but apply
a different set of 32x9x9 filters for each input type separately. This way, inde-
pendence of the resulting feature maps is enforced which improved performance
according to the authors. Further, they adjust the C parameter such that the
number of output channels equals the number of class labels.



4.5 Training and Datasets

Eigen and Fergus conduct their experiments on two datasets. They run the
experiments on the NYUDepth v2 dataset[22], consisting of heavily cluttered in-
door scenes, for all tasks. Additionally, and only for the semantic labeling task,
they also experiment with the SiftFlow dataset of land- and cityscapes[17]. In
order to train a model for one of the tasks, they first extract training data from
the respective dataset and perform the standard data augmentation, i.e. trans-
lation, scaling, in-plane rotations and more to increase the number of training
samples. For all of the tasks, the convolutional layers of scale 1 are initialized
from ImageNet trained weights to speed up convergence. The weights of all other
layers are initialized randomly. Afterwards, they train the models in two phases.
In phase 1, they attach the respective loss function to scale 2 and train both
scale 1 and 2 jointly using SGD[14] from 5M samples. Recall that scale 1 yields
64 different feature maps rather than an actual prediction, hence the loss is at-
tached to scale 2 right away. In phase 2, the trained weights and parameters of
scale 1 and 2 are fixed, and the loss function is attached to scale 3. Then, they
train the weights of scale 3, again on 5M samples. Notably, Eigen and Fergus do
not train scale 3 using the entire input images as it is computationally heavy.
Instead, they use random crops of size 74x55 of both the up sampled scale 2
output and original input data, which leads to a 3x training speed up.

4.6 Experiments

For all three tasks, Eigen and Fergus employ the NYUDepth dataset for training
and testing. They train their models using the official train/test split1 of the
dataset and test on 654 images.

In their experiments on depth prediction, they originally compare the per-
formance of their model to the methods from Karsch[12], Baig[1] and their own
predecessor[3] by various metrics(Table 4.6). However, all of these methods have
only one metric in common, which is the RMSE metric. Based on this metric,
Eigen and Fergus show a significant relative improvement compared to their
predecessor two-scale method of 14%, and compared to Baig et al. they even
measure a relative improvement of 32%. This shows how adding a third scale to
the network increases performance.

In their experiment on surface normal prediction, they compare to two dif-
ferent methods proposed by Fouhey et al.[5, 6], and to Ladickey et al.[18] in
terms of the mean angle distance(mean of the cosine similarity), median an-
gle distance(median cosine similarity) and the percentage of normals being less
than 11.25% different from groundtruth(Table 2). In fact, they conduct differ-
ent experiments with different groundtruth data. This is due to the fact that
the NYUDepth dataset does not have groundtruth normals, instead these can
be computed from depth data with different algorithms. The groundtruth for

1 http://cs.nyu.edu/~silberman/projects/indoor_scene_seg_sup.html



Table 1. Comparison of depth prediction performance of the presented method vs
other methods in terms of the RMSE

Metric Karsch[12] Baig[1] Eigen[3] This

RMSE 1.2 1.0 0.877 0.753

Table 2. Surface normal prediction performance comparison in terms of the mean and
median angle distance as well as the percentage of normals that are within than 11.25%
compared to groundtruth

Metric Ladickey[18] Fouhey[5] Fouhey[6] This

Mean Angle Distance 32.5 34.2 35.1 23.1

Median Angle Distance 22.3 30.0 19.2 15.1

% Within 11.25° Degrees 27.4 18.5 37.6 39.4

Table 3. Semantic labeling performance comparison in terms of the pixel accuracy for
4, 13 and 40 classes on the NYUDepth v2 dataset

Classes Couprie[2] Khan[13] Gupta 13[9] Gupta 14[8] This

4 64.5 69.2 78.0 - 80.6

13 52.4 58.3 - - 70.5

40 64.5 69.2 59.1 60.3 62.9

results in table 2 has been obtained according to [5]. However, Eigen and Fer-
gus beat the other methods in all the mentioned metrics and on all different
groundtruth datasets.

For semantic labeling, they perform experiments on two different datasets:
the NYUDepth dataset of indoor RGB-D data, and the SiftFlow dataset of
outdoor land- and cityscapes. On the NYUDepth dataset they train different
models for predicting 4 classes, 13 classes and 40 classes(Table 3). In succession,
they compare to many other methods in terms of the pixel accuracy, the per-class
pixel accuracy, the Jaccard Index and the mean pixel-frequency weighted Jaccard
Index. Again, the multi-scale CNN significantly beats all the other methods,
except for the 40 class task. In the latter, their model is at least competitive to
Gupta et al. 2014.

Eigen and Fergus also train models on the SiftFlow dataset, showing that
the network can deal with different data. However, this is beyond the scope of
this report. For the SiftFlow results as well as a visualization of predicted depth,
normals and semantic labels, the interested reader is referred to the original
paper.

In addition to these experiments, the authors also investigate how each scale
contributes to the overall performance by training models consisting only of a



particular scale or a combination of scales. As a result, progressive improve-
ments are experienced as more scales are added, which justifies the choice of
the multi-scale architecture. Notably, for the depth and normals task, scale 1
makes the largest contribution. For the semantic labeling task it is scale 2, since
groundtruth depth and normals are added at this scale which take precedence
over the predicted features from scale 1. This circumstance is in fact examined in
additional experiments, where the authors investigate the importance of adding
groundtruth depth and normals to the network input. As a baseline, they do
both training and prediction with a scale 2 only model on RGB data. When
they add scale 1, they notice a small improvement. When they add groundtruth
depth and normals to the scale 2 and 3 input, they notice a considerable im-
provement. Further, they also replace the groundtruth depth and normals with
predicted depth normals and compare the performance. Doing so, they notice
that the model performs much like the RGB-only two-scale model. This shows
that scale 1 itself is capable of extracting enough depth and normals information
on its own. Indeed, the coarse scale 1 network is very important for predictions
from pure RGB data in all tasks.

5 ICCV 2015

In the meantime, Eigen and Fergus improved their architecture and submitted a
revised version of their paper to ICCV 2015. They replaced the scale 1 AlexNet
by the ImageNet-winning VGG-Net[23] architecture which has a larger receptive
field size. With this modification, they, for instance, were able to improve the
RMSE of the depth prediction task by 14% compared to their arXiv 2014 model.
Furthermore, they also ran experiments on the PASCAL VOC dataset in order
to be able to compare to other methods which had meanwhile been proposed
for the three vision tasks. Finally, they were also able to successfully combine
the depth and normals prediction task into a single network which shares scale
1 and allows for prediction of depth and normals in parallel, including a 1.6x
training speed up.

6 Conclusion

In conclusion, Eigen and Fergus made a very valuable contribution to the com-
puter vision community with a single, multi-scale CNN architecture that can
easily be adapted to different tasks by formulating an appropriate loss function
and adjusting a few parameters. They justify the choice of their architecture by
setting the state-of-the-art for three different vision tasks. Notably, their method
does not require any pre- or postprocessing, i.e. the models can be trained end-
to-end, and it operates in realtime (30Hz) on a GPU. In future work they aim
to use sparsely labeled data for faster training and suggest to also apply their
method to other tasks such as instance labeling.
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16. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.



17. Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T Freeman. Sift
flow: Dense correspondence across different scenes. In Computer Vision–ECCV
2008, pages 28–42. Springer, 2008.
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