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Preface
This workshop brings together two very successful MICCAI-Workshop series (CVII and STENT) 
in order to form a common event on technological and scientific research concerned with 
endovascular procedures. A continuous communication between surgeons/physicians and scientific 
and industrial researchers is crucial for bringing forward innovative solutions to the clinics. We aim 
to provide an interchange platform for medical experts and technological researchers concerned 
with all aspects of endovascular interventions.

The workshop will focus on imaging, treatment and computed assisted technological advances in 
diagnostic and intraoperative imaging. Such techniques offer increasingly useful information 
regarding vascular anatomy and function and are poised to have dramatic impact on the diagnosis, 
analysis, modeling and treatment of vascular diseases. Computational vision techniques designed to 
analyze images for modeling, simulating and visualizing anatomy and medical devices such as 
stents as well as the assessment of interventional procedures are therefore playing an important role 
and are currently receiving significant interest.
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Volume Constraint Denoising of
Digital Subtraction Angiography Sequences
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Abstract. Digital Subtraction Angiography (DSA) using C-arm sys-
tems is a widely used imaging modality for the morphological and func-
tional assessment of human vasculature. As 2D+t DSA sequences typ-
ically suffer from noise, the application of denoising algorithms is nec-
essary for subsequent processing, e.g., in order to compute quantitative
measures such as the Bolus Arrival Time (BAT). We propose a varia-
tional denoising method that accounts for the physics of the image forma-
tion process and preserves the injected amount of contrast agent (CA).
We also explain how the injected amount of CA can be estimated from
the DSA sequence itself and demonstrate the potential of our approach
as well as its benefits for the computation of the BAT using synthetic
data and phantom experiments with various geometries.

1 Introduction

Digital Subtraction Angiography (DSA) using C-arm systems is still one of the
most widely used medical imaging techniques for human vasculature with appli-
cations ranging from diagnosis over pre-operative planning and intra-operative
guidance to post-operative assessment. Current research focuses also on the
quantitative study of blood flow parameters, such as the volumetric flow rate
[12] or the computation of the bolus arrival time (BAT) [10], which provides an
intuitive way of summarizing a DSA sequence in one picture [11]. DSA sequences
are, however, relatively noisy, because low-dose X-ray imaging is noisy by nature
and the background subtraction even amplifies the noise, which is a well known
property of numerical differentiation. As a consequence, the application of noise
removal techniques is beneficial for any kind of further processing steps, such as
hemodynamic analyses [10], [1], [11]. The goal of this paper is the derivation of
a variational denoising method, specifically designed for 2D+t DSA sequences,
which is thoroughly motivated from a physical point of view. Thereby, we go be-
yond the classical approach and consider not only the energy to be minimized,
but also the volume preservation of the injected contrast agent (CA). In Sec. 2
we thus introduce a variational framework which includes the proposed volume
constraint, a Poissonian noise model, and a carefully chosen regularizer. We fur-
ther present a numerical solution technique in Sec. 3. Finally, we demonstrate
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the potential of our approach using synthetic and phantom data in Sec. 4, where
we also demonstrate its benefits for BAT computation.

2 The Model

Let Ω ⊂ R2 denote the two dimensional continous image domain and fi : Ω →
[0, 1] (i = 0, 1, . . . , N) a sequence of DSA frames. Our goal is to compute a
sequence of denoised frames ui : Ω → [0, 1] minimizing an energy of the form

N∑
i=0

D(ui, fi) + λR(ui), (1)

whereD is a data term enforcing the solutions ui to be close to the observations fi
(w.r.t. to a certain metric), R is a regularizer ensuring regularity of the solution,
and λ ∈ [0,∞) is a real positive parameter that allows the user to adjust the
trade off between data fidelity and regularity.

2.1 Introducing the Volume Constraint

The minimization of (1) can be performed for each frame individually by solving

min
ui∈Fi(Ω)

D(ui, fi) + λR(ui), (2)

where F (Ω) is an appropriate function space, such as the space of square in-
tegrable functions L2(Ω). This canonical formulation is, however, defective in
the sense that it is not volume preserving. At first, we note that the integral (or
sum) of all intensity values in a DSA frame, denoted by f i, is proportional to
the injected amount of CA (assuming no detector saturation), i.e.,

f i :=

∫
Ω

fi(x) dx ∝ vi, (3)

where vi denotes the total volume injected (and thus visible) in the i-th frame3.
Increasing the desired amount of regularity (controlled by λ) this quantity may
not be preserved as demonstrated in Fig. 1(b). The reason is that by increasing
λ we trade data fidelity - and thus volume fidelity - for regularity which leads
to the observed volume loss. Thus, we propose to incorporate the amount of
injected CA by augmenting the function space F (Ω) appropriately and choose

Fi(Ω) =

{
u ∈ L2(Ω) :

∫
Ω

u = f i

}
. (4)

It is important to note that incorporating the volume constraint in this way, has
the following advantages.

3 Under the assumption that there is no CA visible in the background frame.
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Fig. 1. Necessity of Volume Preservation (a) is showing a simulated dataset with
a high curvature – from top to bottom: geometry and one frame of simulated DSA (top
view), DSA with Poisson noise, denoised DSA, respectively. (b) shows the percentage
of the conserved ground truth volume for each image frame and different levels of λ
(the plots with volume constraint are indicated with crosses). Especially during the
inflow phase (frame 1 to 90), the volume of CA is hardly conserved.

1. By using f i instead of vi we do not require an attenuation calibration in
order to estimate the proportionality constant in (3). The practicability of
this approach is demonstrated in Fig. 2, where we observe how an automated,
constant injection of CA causes an increasing intensity signal (f i)

N
i=0 with a

slight periodicity superimposed due to pulsatile blood flow.
2. To the best of our knowledge, there is no device or method to measure the

amount of CA leaving the field of view. In contrast to this, the proposed
estimation technique automatically handles this case, cf. Fig. 2(c).

3. Being incorporated into the function space, the volume constraint can be
considered as a hard constraint leading to a projected gradient descent algo-
rithm, cf. Sec. 3 and [8]. It would have been possible to enforce the volume
constraint also by adding another energy term in (2), but this would facilitate
trading volume fidelity for regularity again.

In Sec. 2.2 and 2.3 we discuss the choice of D, R and in order to simplify the
notation we will omit the dependency on the frame index i from now on.

2.2 Choosing the Data Term

Typical choices for data terms are smooth `2-type penalties, such as the one used
in the seminal work of Rudin et al. [9], or non-smooth `1-type penalties, which
have been advocated due their robustness w.r.t. outliers, cf. [7] for instance.
The main source of noise in X-ray systems is, however, quantum noise which is
Poisson distributed, cf. [6]. As Poisson noise is signal dependent, unlike Gaussian
noise, it is advisable to employ an adapted data term and we thus use

D(u, f) =

∫
Ω

u(x)− f(x) log(u(x)) dx (5)
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which has been derived by Le et al. [4].

2.3 Choosing the Regularizer

The total variation is certainly one of the most widely used as well as extensively
studied regularizers for variational problems in computer vision, such as image
denoising, segmentation, optical flow, etc. [2]. For denoising angiographic imag-
ing sequences, however, we propose to use a different regularizer. Denoting the
three-dimensional concentration of CA in the vessel by c, its propagation can be
modeled by an advection diffusion equation of the form

∂tc = ∇ ·D∇c−∇ · vc, (6)

where D denotes the diffusivity and v the velocity vector field of the flowing
blood. Restricting our considerations to a fairly laminar blood flow, which is a
quite common assumption for blood flow quantification tasks, cf. [12] and [10],
we may assume that D and v are regular enough such that the solution c at
a certain point in time is an element of the Sobolev space H1(Σ), cf. [3]. This
means that its H1-norm is bounded, i.e.,

‖c(·, t)‖2H1 =

∫
Σ

|c(x, t)|2 dx+

∫
Σ

‖∇c(x, t)‖22 dx <∞, (7)

where Σ ⊂ R3 denotes the volume of interest. In fact, the regularity of the two
dimensional DSA frames is actually higher than the one of the CA distribution
in three dimensions. The reason is that the image intensity in one image point x
of a DSA frame corresponds to the absorption caused by the CA integrated along
the respective ray through x. As the process of integration can be considered as
a smoothing operation - the Radon transformation for an example is known to
yield a regularity gain of order 1/2 [5] - it is reasonable to enforce that u has
at least H1 regularity, in nearly all geometries. This assumption does not hold
at boundaries at hard 90 degree curves along the line of sight, which can be
neglected, because, first, this is very rare and second, this is a zero set in the
domain. Thus, we choose

R(u) =

∫
Ω

‖∇u(x)‖22 dx (8)

as a regularizer which enforces u ∈ H1(Ω). Note: The first order term of the
norm is the data term itself

3 Numerical Solution

Before solving (2) we perform the following two preprocessing steps.

1. It is advisable to employ a segmentation χ : Ω → {0, 1} of the vasculature

which can be obtained via thresholding and post-processing U =
∑N
i=0 ui,
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Fig. 2. Image based Estimation of Iodine Volume Exemplary DSA frame (a),
segmentation χ (b), signal of integrated intensity values (w.r.t. segmentation) (c), and
(d) fitting of global (blue) and periodical (red) components to this signal yielding the
denoised signal (gi)

N
i=1 (green) shown during inflow phase.

e.g., by morphological operations. The rationale behind this step is that χ
can now be used to compute the signal (χfi)

N
i=0 which does not contain the

background noise, which we do not want to take into account.
2. We further denoise the signal (χfi)

N
i=0 as described in Fig.2, because it still

contains the noise present in {x : χ(x) = 1}. This denoising is achieved by
fitting a global component modeling the inflow, e.g., a smoothing spline, and
a periodical component modeling the effects caused by the pulsatile blood
flow, e.g., a linear combination of sine functions, to the data. To simplify the
notation, we will denote this denoised signal by (gi)

N
i=0 in the following.

Regarding the minimization of (2) we note that the frame-wise energy in (2) as
well as the function space F in (4) are convex, because both the data term and
the proposed volume constraint are linear in u and the regularizer is convex.
Thus, we have a convex energy defined on a convex domain which guarantees
a global minimum. An obvious way of solving this problem is to perform the
projected gradient descent method

ut+τ = PF

[
ut − τ

(
1

ut
(ut − f)− λ∆ut

)]
, (9)

where

PF (u) = u+
gi − χu
χ

· χ, (10)

is the projection into the function space F , cf. [8]. In order to avoid a division
by 0, we also normalize ut to the range [ε, 1] with ε > 0 being small.

4 Experiments

We validated our method using synthetic and phantom4 experiments in order to
demonstrate the importance of the proposed volume constraint, cf. Sec. 4.1, as

4 Vascular Simulations LLC http://www.vascularsimulations.com/
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(a) (b) (c) (d)

Fig. 3. BAT Ground Truth Generation Denoised DSA frame (λ = 1) with manu-
ally tracked locations of the air bubble superimposed (a), noisy DSA frame, with the
zoomed region marked (b), close-ups showing indicated air bubble (c) and (d).

well as the potential of our method for the BAT computation, cf. Sec. 4.2 and
Sec. 4.3. The runtime, on a recent Mac Book Pro Retina 2013 (Core i7, 2.3GHz)
was approximately 1.5 sec. for 100 iterations and a frame size of 960× 400 using
unoptimized MATLAB code. Please note that all figures are best viewed in color.

4.1 Volume Conservation and Denoising Capabilities

We created a synthetic dataset showing the CA propagation in a single curved
vessel using an 1D-advection-diffusion simulation, cf. [12], and volume rendering
corrupted by Poisson noise, cf. Fig. 1(a). The added Poisson noise is parameter
free and only depends on the image intensities [4]. As mentioned in Sec. 2.1,
with increasing the amount of regularity (controlled by λ) the volume is less and
less conserved if no volume constraint is employed, cf. Fig. 1(b), which proves
the necessity of the proposed volume constraint.

4.2 Quantitative Influence on the Bolus Arrival Time

Generating ground truth for BAT computation in case of non-synthetic experi-
ments is a complicated task. We performed an experiment where CA was injected
into a phantom (together with a blood-mimicking fluid) in order to generate a
DSA sequence for BAT computation, using the Time To Half Peak approach[10].
Then we created a second sequence where we injected a small air bubble into
the vessel of the contrasted phantom. This bubble was then tracked manually to
generate a ground truth BAT based on the frame’s time stamp (cf. Fig. 3). The
comparison of this ground truth to the computed BAT from the noisy as well as
the denoised DSA sequence for two different levels of λ can be observed in Fig
4. Please note that all signals in Fig. 4 may have a constant offset, but the mean
slope of them should be equal in the ideal case. The offset is neglectable, since
surgeons use the time differences between two region of interest.

4.3 Qualitative Influence on the Bolus Arrival Time

Besides the quantitative evaluation, we also performed a qualitative comparison.
Therefore we created a color coded BAT image computed from a noisy as well as
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Fig. 4. Comparison to Ground Truth BAT BAT of noisy DSA sequence is shown
in blue, BAT of denoised DSA sequence is shown in red, extracted ground truth BAT
is shown in green for two levels of λ (λ = 0.1 in (a) and λ = 1 in (b)).

a denoised DSA sequence, as seen in Fig.5(a), and Fig.5(b). By using a bi-plane
machine, we can also show, that the computed BAT is quite independent from
the projection angle (see Fig.5(c)). In all cases we computed the time–to–half–
peak intensity [10] for each pixel. It can be seen that the monotonicity of the
BAT in Fig. 5(b) and Fig. 5(c) is clearly preserved in areas with laminar flow
(below the aneurysm), while the effect of the turbulent flow on the BAT can still
be observed within the aneurysm.

5 Discussion and Conclusion

We have proposed a variational method for volume constraint denoising of DSA
sequences which is based on a Poissonian noise model and a H1-regularizer.
Thus, both data term and regularizer account for the physics of the whole image
formation process. The advantage of the presented method is that it does not
require any additional equipment or specialized protocol. We demonstrated the
feasibility of the proposed approach, cf. Fig. 2, as well as its necessity, cf. Fig. 1.
Moreover, we conducted several phantom experiments in order evaluate the im-

(a) Noisy (b) Denoised (c) Biplane

Fig. 5. Qualitative Comparison of the BAT Color coded BAT in seconds of a
DSA (a), BAT computed from denoised DSA (b), and BAT for the same experiment,
but from a different imaging plane (c). Please note that the speckle outside the vessel
is removed due to the segmentation χ.
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pact of our method for quantitative analyses, such as BAT, cf. Fig. 3, Fig. 4, and
Fig. 5. It is important to note that the proposed volume constraint is independent
of the minimized energy and leads to a soft but physically meaningful temporal
coupling without hampering the ability to parallelize the computations regard-
ing individual frames. Although a laminar flow model was considered for the
justification of the regularizer, it should also be noted that our approach yields
meaningful result in case of turbulent flow, cf. Fig. 5. Future work might include
the incorporation of constraints enforcing even stronger temporal consistency,
which however has to be done carefully as it might obstruct the possibility to
process the individual frames separately. Furthermore experiments has to focus
on in-vivo studies where we expect issues in the segmentation task. Accumula-
tion of CA due consecutive scans will be subtracted any how. Also a low SNR
sequences should benefit of our method. Furthermore, if there are physically
motivated volume constraint, this approach can be extended to other modalities
such as MRI or CT.
Acknowledgment: We wish to thank Siemens AG, Healthcare Sector, Angiog-
raphy & Interventional X-Ray Systems, for providing the phantom datasets.
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Faculty of Electrical Engineering, Laboratory of Imaging Technologies,
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Abstract. Several researches have established that the sensitivity of
visual assessment of smaller intracranial aneurysms is not satisfactory.
Computer–aided diagnosis may shorten visual inspection and increase
detection sensitivity by directing a diagnostician to suspicious locations
in cerebral vasculature. For detection of blob–like structures, like aneur-
ysms, multiscale enhancement filters, based on eigenvalues of the Hessian
matrix, have already been proposed. Their main drawbacks are that they
produce nonuniform responses within the structures they are supposed to
enhance and that they are rather slow. In this paper, we propose a blob
enhancement filter, which can be directly calculated from the Hessian
matrix without eigenvalue decomposition. Using two metric functions,
we compared the proposed filter with other blob enhancement filters on
a synthetic image and on fifteen 3D digitally subtracted angiograms. The
response of the proposed filter is more uniform and is computed six times
faster than the other filters.

Keywords: blob–like structures, cerebral aneurysms, multiscale enhance-
ment filters

1 Introduction

Ruptured saccular intracranial aneurysms are the most common cause of non-
traumatic subarachnoid hemorrhages causing substantial rates of mortality and
morbidity. To prevent such fatal events, cerebral aneurysms should be detected
as early as possible from either three–dimensional (3D) X–ray rotational angiog-
raphy (3D–RA), computed tomography angiography (CTA), or magnetic reso-
nance angiography (MRA) images, and then monitored or treated by endovas-
cular or surgical methods [1]. Although currently the detection of aneurysms
is performed visually by experienced neuroradiologists, especially the detection
sensitivity of smaller aneurysms is not satisfactory. Enhancement of aneurysm
sites in cerebrovascular images may shorten visual inspection and increase de-
tection sensitivity by directing the attention of a diagnostician to suspicious lo-
cations in the cerebral vasculature. Image enhancement filters are often used in
medical image analysis and visualization to enhance specific normal and patho-
logical structures [9]. For example, vessel enhancement filters [3] are used to
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enhance and visualize angiograms, while blob enhancement filters [8, 5] are used
to enhance and facilitate the detection of potentially malignant nodular struc-
tures, i.e. lung nodules [9] and colon polyps. Enhancing the structures of interest
may significantly reduce the valuable time that a clinician spends to effectively
inspect a 3D medical image and decreases the possibility that small but impor-
tant structures will be missed [9, 1]. In this paper, we focused on the problem of
better enhancing blob–like structures in 3D cerebral angiograms with the aim
to facilitate better detection of especially small intracranial aneurysms.

The two major limitations of current blob–enhancement filters are 1) their
nonuniform response within spherical, blob–like regions, which may hamper de-
tection of such structures and 2) their computational complexity, for which they
cannot be used for real–time image visualization [9]. Therefore, a computation-
ally more efficient blob enhancement filter is needed that would also be more
robust to the variability of the structures it is aimed to enhance. In this pa-
per, we propose a 3D multiscale blob enhancement filter, which is based on the
analysis of 2nd order image intensity derivatives [3]. The proposed blob enhance-
ment filter was quantitatively evaluated using a synthetic image and 15 cerebral
angiograms of patients with aneurysms. In comparison to several other blob en-
hancement filters, the proposed filter had a nearly uniform response within the
blob–like structures, such as the aneurysms, and its fast computation enabled
real–time visualization of the enhanced images.

2 Background

Enhancement filters are scalar functions, which selectively amplify a certain local
intensity profile or structure in an image. A large class of enhancement filters [4,
6, 3, 8, 5] is based on multiscale analysis of 2nd order image intensity derivatives.
Let I(x) denote the 3D image intensities at coordinates x = [x1, x2, x3]T. The
3 × 3 Hessian matrix Hij(x, s) of 2nd order derivatives of I(x) at scale s is
defined as:

Hij(x, s) = s2I(x) ∗ ∂2

∂xi∂xj
G(x, s) for i, j = 1, 2, 3 , (1)

where G(x, s) = (2πs2)−3/2 exp(−xTx/2s2) is a 3D Gaussian and ∗ denotes
convolution.

Enhancement of structures of specific shapes, e.g. spherical, elongated or
planar, is based on the analysis of eigenvalues of the Hessian matrix H. Let
the three eigenvalues λ1, λ2, λ3 of H be sorted according to their magnitude:
|λ1| ≤ |λ2| ≤ |λ3|. For spherical, blob–like structures all the eigenvalues have
a high, equally signed and isotropic magnitude (λ1 ≈ λ2 ≈ λ3 ∧ |λ1,2,3| � 0),
whereas positive (negative) eigenvalues indicate a dark (bright) structure on a
bright (dark) background. Elongated, tubular and planar structures, for exam-
ple, exhibit distinctly different Hessian eigenvalue relations [3]. The eigenvalue
relations for blob–like structures (or blobness) at scale s can be indicated by
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several different functions B(s) = f(λ1, λ2, λ3). Four existing blobness functions
are reviewed next.

As part of a vessel enhancement filter [3], Frangi et al. introduced the first
blobness measure RB = |λ1|/

√
|λ2λ3| so as to suppress blob–like structures.

Frangi’s vesselness function [3] can be modified into a blobness function as:

BF(s) =

{(
1− exp

(
−R

2
B

2β2

))(
1− exp

(
− S

2

2δ2

))
if λ3 ≤ λ2 ≤ λ1 < 0 ,

0 otherwise ,
(2)

where S =
√
λ21 + λ22 + λ23 is a 2nd order structurness measure, which distin-

guishes between structured and uniform regions in the image. Parameters β and
δ control the sensitivity of measures RB and S [3].

Sato et al. [8] proposed a blobness function that employed only the largest
and smallest of the three eigenvalues:

BS(s) =

{
|λ3|

(
λ1

λ3

)γ
if λ3 ≤ λ2 ≤ λ1 < 0 ,

0 otherwise .
(3)

Parameter γ controls the sensitivity to blobness and is typically set either to 0.5
or 1, which simplifies (3) to

√
λ3λ1 and |λ1|, respectively. Li et al. [5] proposed

a similar blobness function:

BL(s) =

{
|λ1|2
|λ3| if λ3 ≤ λ2 ≤ λ1 < 0 ,

0 otherwise ,
(4)

which can be conceptually split into two factors: λ1 and λ1/λ3. The first fac-
tor represents the magnitude of the blobness function, while the second term
represents the likelihood that a voxel is part of a spherical structure.

Multiscale filter responses are obtained by computing a given blobness func-
tion B for each voxel x and over a range of different scales s (smin < s < smax)
and taking the maximal value [3], i.e.:

B(x) = max
smin≤s≤smax

B(x, s) . (5)

The values of smin and smax are selected according to the minimal and maximal
expected sizes of a structure of interest.

All the aforementioned blobness functions are proportional to the magnitude
of λ1, however, their response is typically not uniform throughout a spherical
structure. For example, |λ1| usually peaks at the center of a spherical structure
and then progressively decreases towards the structure’s periphery. This was,
therefore, our motivation to devise a blobness function that would give a much
more uniform response inside a blob–like structure.

3 Proposed Blobness Function

Several measures of structural isotropy and anisotropy have been proposed for
characterization of diffusion tensors [7], which can also be used to indicate spher-
ical structures based on multiscale Hessian analysis. We consider the following
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blobness function:

BP(s) =

λ1λ2λ3
(

3
λ1+λ2+λ3

)3
if λ3 ≤ λ2 ≤ λ1 < 0 ,

0 otherwise .
(6)

In a geometrical interpretation, (6) is a volume ratio [7] between an ellipsoid,
with semi–axes λ1, λ2, λ3, and a sphere, with radius equal to the mean of the
three eigenvalues. For a spherical structure (isotropic eigenvalues) the volume
ratio has value one and with increasing non–sphericity (anisotropic eigenvalues)
decreases towards zero.

Considering the expressions for computing the determinant and trace of the
Hessian matrix, i.e. det(H) =

∏
i λi and Tr(H) =

∑
i λi, respectively, we intro-

duce a modified and computationally very efficient blobness function:

BP(s) =

{[
27 · det(H) · Tr(H)−3

]γ
if det(H) < 0 and Tr(H) < τ ,

0 otherwise ,
(7)

where τ is a cutoff threshold and γ ≥ 1 is used for nonlinear scaling of the
response. The purpose of constraints det(H) < 0 and Tr(H) < τ is to cutoff the
response of BP(s) for λi ≥ 0, i = 1, 2, 3. However, cases with λ1,2 ≥ 0 and λ3 < 0
may surpass the above constraints. As spherical structures exhibit isotropic,
high magnitude eigenvalues (λ1,2,3 � 0), the magnitude of τ should be set high
enough, for example τ = 0.25 ·min Tr(H), to reliably cutoff such false responses
and responses due to noise (equal and small magnitude eigenvalues).

Individual eigenvalue responses peak in the center of a blob and decrease pro-
gressively towards the structure’s periphery. As the proposed blobness function
is based on the ratio between the magnitudes of eigenvalues, it responds equally
in the center where the magnitudes are high and at the periphery where the
magnitudes are small, resulting in a uniform response throughout the structure.

4 Experiment and Results

The performance of the proposed (7), Frangi’s [3] (2), two variants of Sato’s [8], i.e.
(3) for γ = 0.5 and λ1 for γ = 1, and Li’s [5] (4) blobness functions were evalu-
ated and compared on a synthetic image containing blob–like structures and on
15 cerebral angiograms of patients with aneurysms.

Image Datasets and Experiment Setup. A synthetic image (Fig. 1) was
created that included structures simulating those to be expected in cerebrovas-
cular images: vessels, vessel bifurcations, and aneurysms of varying size and
location. The structures coded in yellow in the synthetic image (Fig. 1) were the
structures targeted by the enhancement filters. To study the influence of noise
on the response of the tested blobness functions, a varying amount of Poisson
noise ηP was added to the synthetic image I(x). Several noisy realizations of the
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Fig. 1. 3D synthetic image and medial cross–sections through the normalized responses
obtained by the proposed, λ1, Sato [8], Frangi [3], and Li [5] filters. The proposed filter
had a maximal response within several blob structures, while the arrows in other filter
responses indicate the location of the maximal response.

image were obtained as I(x, ηP ) = ηPVP (x) + (1 − ηP )I(x), where VP (x) is a
normalized image of a realization of Poisson noise, which is the noise associated
with X–ray sources. Responses of enhancement filter based on the tested blob-
ness functions were computed for ηP in the range from 0 (noiseless) to 1, and by
maximizing the response over a range of scales (5). As the range of the proposed
blobness function values is [0, 1], the values of other functions were normalized
to this range. The average noise levels on real images would normally not exceed
values of ηP = 0.3.

Cerebral 3D digitally subtracted angiograms (3D–DSA) were acquired by a
Siemens Axiom Artis dBA angiography system. Fifteen patients were imaged
and each had one or more aneurysms of different sizes. The sizes ranged from
4 to 11 mm, with the majority in the range 4–6 mm. The 3D–DSA images had
512× 512× 391 voxels with isotropic spacing of 0.46 mm. A volume of interest
(VOI) of 200 × 200 × 200 voxels was manually selected such that most of the
cerebral vasculature and all the aneurysms were within a VOI. Aneurysms were
manually segmented by an expert, and the obtained reference segmentations
were used to quantify the performance of enhancement filters. Filter responses
for all images were obtained by maximizing the response of blobness functions
over scales s ranging from 0.5 to 2.5 mm a with step size of 0.5 mm.

Evaluation criteria. The efficacy to enhance synthetic or aneurysm blob–like
structures was quantified by evaluating segmentation performance using receiver
operating characteristics (ROC) analysis and by quantifying the uniformity us-
ing the median of the response distribution inside the segmented aneurysms.
As the test images contained small structures and most voxels represented the
background, ROC analysis was based on precision–recall curves [2]. To quantify

18
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Fig. 2. Area under the precision–recall curve (left) and median of the response inside
the aneurysm (right) with respect to noise level ηP added to the synthetic image. A
vertical line indicates the average noise levels ηP on the real dataset images.

the segmentation potential of a filter, precision and recall were computed, and
then the area under the precision–recall curve (AUC) was computed. Values of
AUC are between zero and one, with values closer to one indicating a better
correspondence between the filter response and reference segmentation.

The uniformity of the filter responses was assessed using the median (MedR)
of the response within the reference segmentation. All filter responses were nor-
malized to the range 0 to 1. A higher MedR indicates a more compact distribution
of response values around the maximal value and thus a more uniform response.

Results. The 3D synthetic image and medial cross–sections of the 3D syn-
thetic image enhanced with the proposed, λ1, Sato’s, Li’s, Frangi’s blobness
functions are presented in Fig. 1. The proposed blobness function gave the high-
est response, which was also quite uniform throughout the blob–like structures,
irrespective of the size and shape of nearby structures. The application of other
filters resulted in less uniform responses within the blob–like structures, with
the highest response occurring in the centers. For ellipsoidal (nearly spherical)
structures the λ1, Li’s and Frangi’s blobness functions had a distinctly lower
response in the ellipsoid’s center as compared to the proposed and Sato’s blob-
ness functions. The AUC and MedR values as the function of added amount of
Poisson noise ηP in the range 0 to 0.6 (twice the value of real images) are shown
in Fig. 2. The values of AUC and MedR in the presented range are quite con-
stant. According to the results presented in Fig. 2, the proposed filter achieved
consistently achieved the highest MedR (and a large AUC), which is related to
the most uniform response within blob–like structures (Fig. 1).

For the 15 filtered real 3D–DSA images, AUC and MedR values and com-
putational times are given in Table 1. Here too, the proposed blobness function
achieved the larger mean AUC and highest mean MedR. Computation times for
the blobness functions reported in Table 1 were obtained using a CUDA im-
plementation on a NVIDIA 650M GPU. Since eigenvalue decomposition of the
Hessian matrix was not required to compute the proposed blobness function,
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Table 1. The mean and standard deviation of AUC and MedR, and mean computation
times for different blobness function. Values marked with * are significantly lower
(P < 0.05) than the proposed filter values according to the Wilcoxon signed-rank test.

Filter AUC (MEAN ± STD) MedR (MEAN ± STD) Time [s]

Proposed 0.26 ± 0.20 0.73 ± 0.17 1.3
Frangi *0.19 ± 0.16 *0.20 ± 0.08 8.8
Sato *0.16 ± 0.15 *0.49 ± 0.10 9.0
Li 0.24 ± 0.19 *0.22 ± 0.11 8.7
λ1 0.21 ± 0.18 *0.40 ± 0.11 8.6

its computation time was at least six times faster compared to the other tested
blobness functions.

5 Discussion and Conclusion

In this paper, we proposed a blobness function that can be used to enhance
blob–like structures like aneurysms. The proposed blobness function (7) is based
on volume ratio, a tensor anisotropy measure frequently used in diffusion ten-
sor analysis [7]. A synthetic image and 15 cerebral 3D–DSA images of patients
with manually segmented aneurysms were used to quantitatively evaluate the
proposed and several other blobness functions. The enhancement of the targeted
blob–like structures was quantified by evaluating segmentations using ROC anal-
ysis and by quantifying the uniformity using the median of the distribution inside
the manually segmented aneurysms. The proposed blobness function showed im-
proved performance over other blobness functions as it achieved a slightly larger
AUC and a consistently much higher MedR. The main advantage of the proposed
blobness function is reflected in its highly uniform response within the blob–like
regions as seen in Fig. 1. The method has one parameter, which controls the
response uniformity and the number false positives in it. For a highly uniform
response also the amount of false positives is higher, which can be seen as a
disadvantage. However, the balance between the uniformity and the number of
false positives can be adjusted using the introduced filter parameter.

Detection of small blob–like structures in a 3D volume is often difficult even
with advanced image segmentation and visualization tools. For example, in pa-
tients with cerebral aneurysms, the small aneurysms may not be segmented
and thus impossible to visualize. Moreover, complex cerebral vasculature might
occlude small aneurysms, thus careful manipulation of the viewing angle is re-
quired. If the blob–like structures such as small aneurysms are enhanced w.r.t.
other structures, they can be immediately visualized. The proposed blobness
function is computed very fast (six times faster than other blobness function)
and enables real–time visualization of (small) aneurysms (Fig. 3). While some
other filters have less false positives, the detection of small aneurysms is impaired
by the loss of uniformity and thus loss of shape information. In the future the
proposed filter could also be used for enhanced visualization of lung nodules and
colon polyps.
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Fig. 3. Maximum intensity projections of a 3D–DSA with superimposed responses of
the proposed (γ = 3), λ1, Sato [8], Frangi [3], and Li [5] blob enhancement filters. The
two aneurysms are indicated by arrows.
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Abstract. Correct depth perception is crucial for navigation and device
positioning tasks in clinical interventions. Yet, many minimally-invasive
interventions, such as catheterizations, are usually performed under2D
X-Ray Fluoroscopic and Angiographic guidance only. Previous attempts
to integrate pre-operative 3D data of the patient by registering these to
intra-operative data have led to virtual 3D renderings independent of the
original X-ray appearance and planar 2D color overlays (e.g. roadmaps).
Inspired by a recent introduction of improved X-ray visualization, this
paper presents a novel technique to create depth maps for interventional
X-ray images. Assuming a patient-specific pre-operative 3D scan to be
aligned with an interventional image of the same patient, our method em-
ploys GPU ray casting together with a novel gradient magnitude based
transfer function to yield a 2D range image of the anatomy. The accuracy
of X-ray Depth Maps was tested and analysed for three relevant clinical
scenarios covering different anatomical aspects and targeting different
levels of interventional expertise. Therefore, original 3D distances in be-
tween apparent anatomical landmarks have been compared to respective
values extracted from corresponding X-ray Depth Maps.

1 Introduction

The replacement of conventional open surgery with minimally-invasive tech-
niques for various diseases have had dramatic impact on patient survival rate.
However, this development has also increased the importance of intraoperative
imaging guidance that involves harmful ionizing radiation (X-ray) in particular
for endovascular interventions where catheters and guide wires are inserted into
the patient’s vascularity in order to treat cardiovascular diseases. Though pro-
viding fast and reliable anatomy information in decent resolution, the harmful
side effects of ionizing radiation (X-ray) and contrast agents (vessel highlight-
ing) affect both patients and surgical team. Despite the latest findings in intra-
operative 3D cone beam CT (CBCT) reconstructions, 2D X-ray Fluoroscopy
and Angiography is still the state-of-the-art interventional imaging modality for
catheterization procedures. The missing depth information due to the 2D nature
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of these image sequences, is compensated by the interventionalist acquiring mul-
tiple X-ray sequences from varying angulations and then mentally recovering the
3D information. This yields an increase in radiation and use of contrast agent
likewise, as vessels need to be made visible within the X-ray images.

Improved and adapted visualization of X-Ray images has received very little
attention in clinical practice as well as in the medical and technological research
community. Apart from some very recent work on Colored X-rays [10, 1], the
loss of 3D information during medical interventions has mostly been addressed
in terms of 2D-3D image registration. Here, an interventional 2D X-ray image is
aligned with the pre-operatively acquired 3D data (i.e. CT or MRI) of the patient
[7]. Yet, the output of such algorithms is a projection matrix that, by itself,
does not yield any meaningful visualization. In most cases, such registration
algorithms are used as an intermediate step for locating interventional devices
and instruments and showing their positions within a 3D rendering of the patient,
or for volume reconstruction if several 2D X-ray images from varying viewpoints
are available.

In this paper, we present the novel concept of X-ray Depth Maps. Assum-
ing a pre-operative 3D patient data being registered to the current interven-
tional 2D image, our method employs a novel volume rendering technique with
a single transfer function to yield projections with depth encoded intensity rep-
resentation. Besides facilitating depth-enhanced visualization during minimally
invasive procedures, X-ray Depth Maps provides a variety of possibilties ranging
from specific distance measurements to constraints for ill-posed image-guided
interventions concepts.

The remainder of the paper is organized as follows: In section 2, we intro-
duce the framework of our methodology and give details in various subsections.
Our performed evaluations and experiments are explained and systematically
discussed within section 3. Finally the paper is concluded and ideas for future
work are presented in section 4.

2 Methodology

Assuming the pre-operative 3D patient to be optimally aligned to the current
interventional X-ray image, we propose a depth rendering scheme to yield a cor-
responding X-ray Depth Map. The details of rhis compositing will be described
in the remainder of this sections. Although not within the focus of this paper,
we will give more details on available 2D-3D registration methods to align pre-
and intra-operative images, within section 3.

2.1 Simulation of X-ray Images

The concept of Digitally Reconstructed Radiographs (DRR) essentially describes
the digital simulation of X-ray images.
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2.2 Depth Composition

In volume rendering, the compositing scheme specifies the accumulation of indi-
vidual contributions from the sample points along the ray through a volume [8].
Two existing depth compositing schemes can be found in the literature. Aichert
et al. [1] proposed a volume rendering employing a 2D depth-intensity-based
transfer function that encodes depth in color during rendering of an emission-
only model (depth integral method). The transfer function was decoupled into
two 1D transfer functions one for the mapping from depth to color and one for
the mapping of the voxel values to the corresponding intensity (the standard
DRR transfer function). Along the casting ray, the two transfer functions were
multiplied and yielded a weighted accumulation of the different colors along the
ray. Second, another depth compositing scheme is represented by maximum in-
tensity projection (MIP), which acquires the maximum contribution along the
ray. It is mainly used for virtual angiography the display of vessel structures in
medical images [6, 5, 9].

Figure 3 depicts the differences and drawbacks of the men- tioned existing
schemes. It can be clearly seen in Figure 3(a) that depth integral causes a merg-
ing of depth where different tissues overlap. In locations outlined by two circles
(yellow and green), where skull and vessel overlap, a new hue - indigo has ap-
peared, which is a combination of blue and violet. No matter which tissue is in
front, the combined hue will not change. It only relates to the transfer function
result of these tissues. This can be also deduced from the mathematical operation
of depth integra- tion. Figure 3(b) shows the rendering result of colored DRR
using MIP compositing. Although it gives clear cues to perceive depth, there are
misleading occlusions, which have been out- lined by three circles (cyan, yellow,
green). In locations where skull and vessels overlap, the depth color of skull is
shown, since the intensity of bone is bigger than that of vessels (yellow and green
circles). However, these vessels are in fact located in front of this particular skull
part, since in the presented color space, objects colored in purple are nearer to
the observer than blue colored structures. The cyan circle shows an example of
false vessel overlap. Because purple is nearer than violet, the vessel colored in
violet should be occluded by vessel colored in purple. However, due to different
intensity distribution (the original intensity of the violet vessel is higher than
that of the purple vessel), the colored DRR shows the violet vessel. As stated by
Ware [27], occlusion is probably the strongest cue for depth perception. Thus,
it is difficult for the observers to correct wrong occlusion by color cues. Hence,
depth compositing by MIP usually gives a false depth intuition. In order to
obtain a legible, lucid and intuitive colored DRR, we propose a gradient-based
depth compositing scheme, which uses gradient values of the transfer function
to obtain material boundaries: (2) The term Z(D) is the depth compositing re-
sult through the pro- cess of ray casting (enter the volume at position s = 0
and leave the volume at s = D), TF represents the transfer function and t is a
given threshold for gradient. We choose this compositing scheme mainly for two
reasons. In general, people observe distance or depth information of an object
by the reflectance of light from the object surface, in addition to the principal
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of binocular vision. Hence, people are more sensitive to edges formed between
different objects. There are various tissues in human body with different den-
sities and the transfer function can separate these and assign them to rang- es
of values in the source data that correspond to features of interest. Thus, with
the gradient of transfer function along a ray, we can obtain material boundaries
between different tissues. Second, a specific threshold t is introduced to control
specific boundary selections. Assuming that vessels have higher intensity curva-
ture than bone, bone in front of vessels will be shown with a lower threshold. In
contrast, bone can be ignored using a high- er threshold. It can be seen in Figure
3(c) that our proposed method is able to correct the occlusion of overlapping
tissues. Compared to render results of existing methods, parts of the skull are
occluded by front vessels (yellow and green circles). Also the purple vessel shown
within the cyan circle now correct- ly occludes the violet vessel.

2.3 Rendering

3 Experiments & Results

3.1 Setup & Preparation

The first step in our framework consists in aligning a corre-sponding 3D patient
volume acquired prior to the intervention (CT or MRI), to the current inter-
ventional X-ray image. 2D/3D registration has been subject of many research
initiatives and the reader is referred to Markelj et al. [7] for a complete overview.
One common approach is intensity-based image registration where the alignment
of a 3D volume V and a 2D image I is performed via

P̂ = arg max
P
S(P ◦ V, I) (1)

where P = K[R|t] presents a projective transformation com-bining the 6-DOF
extrinsic parameters rotation R and translation t and the 4-DOF intrinsic imag-
ing parameters K. The projection of the 3D volume (denoted by delimiter ◦) is
generally realized via the concept of digitally reconstructed radiographs (DRR).
Essentially, this describes a virtual simulation of an X-ray by ray casting em-
ploying a single render pass to map CT Houndsfield units to X-ray attenuation
values. As shown by previous works, this concept can be implemented efficiently
using GPU computing power. We aim at registering interventional images that
may introduce outliers such as image dissimilarities induced by medical instru-
ments that are not present in the pre-operative 3D data, or by the varying
presence of injected contrast agent. Hence, we opted for an approach combin-
ing disocclusion-based registration [2] and DRR masking [3]. For registering a
contrasted pre-operative patient volume to a non-contrasted X-ray fluoroscopy
image, a segmentation of the contrasted vessel within the preop-erative volume
is obtained by using readily available tools such as ITK-SNAP 3. During DRR

3 ITK-SNAP - http://www.itksnap.org/pmwiki/pmwiki.php
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ray casting, only those voxels that are not part of the segmented structures
are accumulated. On the other hand for contrasted X-ray images the segmenta-
tion is neglected during DRR rendering. Our algorithm extracts the information
whether a specific interventional X-ray image is contrasted (angiography) or
non-contrasted (fluoroscopy) from dedicated, standardized tags within the im-
age header (DICOM ). Depending on the type of image, the algorithm performs
the registration to the interventional X-ray with either the masked or the con-
ventional DRR [3]. Once instruments are present within the interventional X-ray
scene, the occluded region is outlined automatically [4] and reconstructed with
an adapted Poisson editing technique [2]. For subsequent registration to the
pre-operative volume, only the reconstructed 2D image is used.

4 Conclusion
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Abstract. Coronary culprit and non-culprit site comparisons have typ-
ically been based on manually selected IVUS frames. A novel method for
automated selection of culprit and non-culprit frames is reported, based
on analyzed distribution of atherosclerotic plaque burden. Comparison
of plaque characteristics including presence of thin-cap fibroatheroma
(TCFA) in proximal and distal vessel locations was performed relative
to the culprit lesion. In 80 patients undergoing coronary catheterization,
the study demonstrates that proximal and distal non-culprit frames are
substantially different from each other considering both morphology and
plaque composition. We have further demonstrated that the range-based
comparison increases the analysis robustness.

Keywords: Coronary artery, Atherosclerosis, Culprit site, Plaque bur-
den, Intravascular ultrasound, Segmentation, Thin-cap fibroatheroma.

1 Introduction

Coronary atherosclerosis is by far the most frequent cause of ischemic heart
disease. Rupture of vulnerable plaque or occlusive coronary disease causes the
acute coronary syndromes of unstable angina, myocardial infarction, and sud-
den death [5]. Some autopsy studies suggest that composition and structure of
plaque are key determinants of propensity of human atherosclerotic lesions to
provoke clinical events [10]. For example, fibroatheromas with a large necrotic
core component and thin-cap fibroatheroma (TCFA) that is in extensive contact
with the lumen seem particularly prone to rupture, resulting in thrombosis and
sudden cardiac death [2, 9, 12].

Modern invasive imaging systems have provided a much more detailed plaque
visualization previously only possible through autopsy. Intravascular ultrasound
(IVUS) allows tomographic cross-sectional visualization of the full luminal wall
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and enables in-vivo assessment of plaque morphology. High ultrasound frequen-
cies are used, typically at 20 to 40 MHz range, providing excellent theoretical
resolution. Moreover, spectral analysis of IVUS radiofrequency backscattered
signals, known as virtual histology IVUS (VH-IVUS), has been developed to
characterize coronary tissues. A more detailed description of the quantitative
assessment for different plaque types through VH-IVUS — fibrosis, fibro-fatty,
necrotic core, and dense calcium — are provided in [8].

When trying to evaluate the severity of coronary plaque and determine the
lesion characteristics, most studies focally examine just a culprit frame instead
of the whole vessel. Clinically, a culprit frame is defined as the frame of maximal
plaque burden. The potential contributing factors of lesion formation can also be
evaluated through the comparison of culprit and non-culprit frames. However,
non-culprit frames are usually chosen by experts and the selection varies from
person to person; the culprit vs. non-culprit comparison is typically based on
analyzing 3 consecutive frames at each of the two locations and may suffer from
a lack of generality.

In this paper, we report a new method in which culprit and non-culprit
frames are chosen automatically, and in which the subsequent comparison is
range-based. To better evaluate non-culprit frames, we also separate them into
two groups — distal and proximal, based on their locations along the vessel.

2 Method

2.1 IVUS Segmentation

IVUS segmentation of lumen and adventitia surfaces in coronary vessels, com-
bined with follow-up VH analysis, is essential to quantitative assessment of
atherosclerotic plaque-morphological characteristics. However, most of previous
IVUS image segmentation methods with reliable results required substantial user
interaction.

Sun et al. recently presented a new graph-based approach for simultaneous
dual-surface segmentation of coronary vessels in IVUS images [11]. The approach
consists of a fully automated segmentation stage and an efficient user-guided
computer-aided refinement stage. During the initial automated segmentation
stage, this dual-surface segmentation problem was transformed into a graph
optimization problem using the LOGISMOS framework [7]. The two surfaces
were simultaneously segmented as the minimum-cost closed set in a weighted
graph. During the refinement stage, weights of the previously built graph were
updated in response to expert-user’s indication of desired correction and the
graph optimization repeated in close-to-real time.

This new segmentation method delivered significantly better results com-
pared to the previous work [4], and the accuracy of automated stage alone was
superior to other automated methods that have previously been evaluated using
a IVUS challenge database [1]. More importantly, it allowed the user to generate
high quality segmentation results with the average operation time reduced from
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several hours to several minutes. Our implementation and the interface of this
IVUS segmentation method is displayed in Fig. 1.

Fig. 1. Interface of IVUS segmentation. The left panel is the frame view while the right panel
is the longitudinal view along the vessel. User-guided refinement can be done on both views after
initial automated segmentation step.

2.2 TCFA Definitions

One of the most important features in coronary plaque morphology is thin-
cap fibroatheroma (TCFA). The atherosclerotic plaque has a core containing
lipids and lipid-rich debris from dead cells. Surrounding it, a layer of smooth
muscle cells and a collagen-rich matrix stabilize the plaque. This layer of fibrous
connective tissue is called fibrous cap, which is thicker and less cellular than the
normal intima [6].

TCFA condition implies that the vessel lesion is at risk of rupture. Based on
the actual cap thickness of autopsy specimens, TCFA was defined as a lesion with
a fibrous cap < 65 µm thick and infiltrated by macrophages [2]. A typical IVUS-
derived definition of TCFA lesion requires satisfying the following 3 criteria in
3 consecutive frames: 1) confluent necrotic core (NC) in contact with lumen is
≥10% of plaque area; 2) there are >30◦of NCs abutting lumen; 3) plaque burden
(PB, plaque area divided by the adventitial cross-sectional area) is ≥ 40% of the
lumen

2.3 Morphological Feature Definition

Besides TCFA, various important morphological features are quantified. The
frame-based definitions of those features are defined as follows:

– Adventitia Area: the area within the outer border of vessel.
– Lumen Area: the area within the inner border of vessel.
– Plaque Area: the area between inner border and outer border.
– Plaque Thickness: each frame is divided into 360 circumferential wedges

centered at the centroid of lumen. For each wedge, plaque thickness is defined
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as the distance from the adventitia border point to the corresponding lumen
border point. For the entire vessel, plaque thickness is defined as the average
plaque thickness over all wedges.

– Plaque Burden: the ratio of plaque area to adventitia area.
– Plaque Composition by VH subtype (%) the percentage of each plaque

component (NC/DC/FF/F) over the entire plaque area.
– Eccentricity: measured as the ratio of minimal wedge plaque thickness to

maximal wedge plaque thickness, which quantifies the asymmetric distribu-
tion of atherosclerotic plaque.

2.4 Automated Culprit and Non-culprit Selection

As mentioned above, traditional culprit vs. non-culprit studies are subject to
limitations: non-culprit frames are usually chosen manually and the culprit vs.
non-culprit comparison is based on only 3 consecutive frames at each of the two
locations. To improve objectivity and generality, we developed a new method to
choose culprit and non-culprit frames automatically, and to explore the difference
between them in terms of ranges instead of focal frames:

Step 1 Location of culprit frame (i.e., maximal plaque burden) is initially de-
termined for each vessel.

Step 2 All vessels are aligned in longitudinal direction and centered at the
culprit frame. For other frames, the distance from culprit is calculated ac-
cordingly.

Step 3 Plaque burden of all frames against the frame distance from culprit are
graphed in one single chart for all vessels and a locally weighted scatterplot
smoothing (LOESS) regression line is fitted. LOESS is a non-parametric
regression method following the logic that points near each other are more
likely to be related by using the tri-cube weight function [3]:

w(d) = (1− |d|3)3, where d is distance away from point of estimation. (1)

For each data point in graph, a low-degree polynomial is fitted to a subset
of the data. Subset size is determined by a smoothing parameter α, which
is in the range [λ+1

n , 1]. λ is the degree of polynomial while n is the size of
dataset. The value of α is the proportion of data used in each fit and has
been set to 0.75 in our case.

Step 4 Then, a second-derivative test is applied on the LOESS regression line
used to determine the critical points, which represent the local maximal
decreasing rate of plaque burden. The proximal / distal non-culprit zone
is defined as the range from such a critical point to end / start of the vessel
(Fig. 2).

Thereafter, three groups — 3-frame culprit (C), distal (D) and proximal (P)
non-culprit are generated and can be compared with each other. Note that the
terms of “distal” and “proximal” are defined with respect to the coronary ostium
position. Besides C vs. D, C vs. P, C vs. D&P comparison, a new comparison
assessing the difference between D and P groups was performed to evaluate
non-culprit frames characteristics at different locations along the vessel.
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Fig. 2. Plaque burden continuous distribution with LOESS regression line (dark blue) for all frames
of 80 patients after culprit-centered alignment is shown. Points in each vertical line represent plaque
burden values of all IVUS frames positioned at the same distance from the culprit frame. Light blue
lines show the 3-frame culprit while green lines show the range of non-culprit. The second derivative
cut-off points [distance, plaque burden] are [-6.5mm, 60.1%] and [8.5mm, 55.5%].

3 Results & Discussion

The reported analyses were performed in 80 IVUS pullbacks from 80 subjects
who underwent coronary catheterization. After aligning the pullbacks at their
respective culprit frames, the range of all frames is from -18.5 mm to +18.5 mm
(with the culprit frame being centered at 0.0 mm) as shown in Fig. 2. Based on
the above-mentioned automated non-culprit frames selection method, the two
second derivatives of plaque burden LOESS regression line are -6.5 mm and +8.5
mm respectively. Therefore, the distal non-culprit frames would be represented
by frames between -18.5 mm and -6.5 mm; the proximal non-culprit frames would
be between +8.5 mm and +18.5 mm.

In summary, there are a total of 258 culprit frames, 1627 distal non-culprit
frames and 1474 proximal non-culprit frames. The average distance of distal
frames from the culprit location is 11.9 ± 3.6 mm while the average distance of
proximal frames is 13.3 ± 3.0 mm.

3.1 TCFA Comparison

The statistical results of TCFA for 3 different groups are shown in Table 1 and
the Fisher’s exact test results (p-values) are shown in Table 2. Even though
culprit frames do contain more TCFA frames (37%) compared to distal frames
(33%) and proximal frames (34%), the Fisher’s exact test indicates that there
are no significant locational differences based on the employed TCFA definition.
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Table 1. TCFA Analysis of 3 Groups — Culprit (C) / Distal (D)/ Proximal (P)

TCFA = True False Total
Culprit 96 (37%) 162 (63%) 258
Distal 529 (33%) 1098 (67%) 1627
Proximal 503 (34%) 971 (66%) 1474
Distal&Proximal 1032 (33%) 2069 (67%) 3101

Table 2. Fisher’s exact Test of 3 Groups TCFA

C vs. D C vs. P D vs. P C vs. D&P
p-value 0.15 0.36 0.36 0.21

3.2 Morphological Comparison

The statistical results of morphology for 3 different groups are shown in Ta-
ble 3 and the respective unpaired Student’s t-test results (p-values) are shown in
Table 4. As expected, culprit frames contain significantly larger plaque burden
(0.76) compared to non-culprit frames — distal (0.58), proximal (0.55) and dis-
tal&proximal (0.57). Moreover, culprit frames exhibit significantly larger plaque
thickness and plaque CSA, which is leading to a smaller lumen CSA. Something
more interesting concerns adventitial CSA and eccentricity features comparison:

– Adventitia CSA: The t-test’s p-value shows that culprit and non-culprit
(proximal&distal) frames have no significant difference over adventitia CSA
(15.81 vs. 15.92 mm2). However, culprit frames have actually a larger adven-
titia CSA than distal non-culprit frames but a smaller adventita CSA than
proximal frames.

– Eccentricity: The culprit frames are prone to have a smaller eccentricity
compared to non-culprit frames. In other words, plaque accumulation in
culprit frames are distributed more evenly than in non-culprit frames.

We summarize below the comparison over plaque components — necrotic
core (NC), dense calcium (DC), fibrofatty (FF) and fibrotic plaque (F):

– NC: the significant difference was observed for on culprit vs. distal frames
(p-value = 0.033) and culprit vs. distal&proximal (p=0.044). However, NC
percentage is not significantly different between culprit and proximal. Thus,
it can be concluded that the NC% significant difference between culprit
and distal&proximal is derived from differences between culprit and distal
locations alone; NC% of the culprit frames is higher than that of distal frames
but similar to proximal frames.

– DC: culprit frames have a lower DC% than non-culprit frames.

– FF: FF% of culprit frames is higher than that of distal frames but similar
to proximal frames.

– F: culprit frames have a higher F% than non-culprit frames.
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Table 3. Morphological Analysis of 3 Groups — Culprit (C) / Distal (D) / Proximal (P)

Mean ± Std Culprit (C) Distal (D) Proximal (P) Distal&Proximal
Plaque Burden 0.76 ± 0.10 0.58 ± 0.14 0.55 ± 0.15 0.57 ± 0.15
Plaque Thickness (mm) 1.13 ± 0.35 0.77 ± 0.34 0.81 ± 0.33 0.79 ± 0.34
Plaque CSA (mm2) 12.14 ± 5.00 8.56 ± 4.82 9.96 ± 4.85 9.22 ± 4.89
Lumen CSA (mm2) 3.67 ± 1.86 5.44 ± 2.54 8.08 ± 4.39 6.69 ± 3.78
Adventita CSA (mm2) 15.81 ± 5.55 14.00 ± 6.13 18.03 ± 6.58 15.92 ± 6.65
Eccentricity 0.64 ± 0.19 0.67 ± 0.18 0.69 ± 0.17 0.68 ± 0.17
Necrotic Core (%) 22.35 ± 11.48 20.68 ± 12.38 21.01 ± 12.14 20.84 ± 12.26
Dense Calcium (%) 7.70 ± 8.36 10.70 ± 11.85 10.39 ± 10.46 10.55 ± 11.21
Fibrofatty (%) 12.35 ± 9.95 10.03 ± 11.48 11.04 ± 11.18 10.51 ± 11.35
Fibrotic Plaque (%) 57.60 ± 13.43 52.87 ± 21.28 55.52 ± 17.80 54.13 ± 19.75

Table 4. Statistical Comparison among 3 Groups Using t-test

p-value C vs. D C vs. P D vs. P C vs. D&P
Plaque Burden � 0.01 � 0.01 � 0.01 � 0.01
Plaque Thickness (mm) � 0.01 � 0.01 0.004 � 0.01
Plaque CSA (mm2) � 0.01 � 0.01 � 0.01 � 0.01
Lumen CSA (mm2) � 0.01 � 0.01 � 0.01 � 0.01
Adventita CSA (mm2) � 0.01 � 0.01 � 0.01 0.776
Eccentricity 0.013 � 0.01 0.003 0.001
Necrotic Core (%) 0.033 0.086 0.462 0.044
Dense Calcium (%) � 0.01 � 0.01 0.442 � 0.01
Fibrofatty (%) 0.001 0.056 0.013 0.005
Fibrotic Plaque (%) � 0.01 0.031 � 0.01 � 0.01

3.3 Non-culprit: Proximal vs. Distal

Above comparisons between culprit and non-culprit frames have already exhib-
ited some differences between proximal and distal non-culprit frames over fea-
tures like adventitia area, NC% and DC%. A closer look at Table 3 and Table 4
shows that morphological structures of distal and proximal non-culprit frames
are substantially different from each other. Compared to proximal frames, dis-
tal ones have smaller lumen CSA and smaller adventitial CSA, which could be
caused by the natural shape of the vessels. The larger plaque burden value of
distal frames may indicate a faster relative plaque-accumulation rate than proxi-
mal frames. As for plaque components, FF% and F% are different between distal
and proximal non-culprit frames as well, with both values being lower in distal
frames.

4 Conclusion

Previous studies of culprit and non-culprit comparisons were mainly based on
manually chosen frames, which could belong to either proximal or distal segments
or the combination of both. In contrast, our approach selects the culprit and
non-culprit frames automatically. Our results have shown that proximal and
distal non-culprit frames are substantially different from each other considering
both morphology and plaque composition. We have further demonstrated that
the range-based comparison increases the analysis robustness. Even though we
revealed many morphological differences, the TCFA definition we implemented
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failed to separate culprit and non-culprit frames. One possible reason could be
that the axial resolution of IVUS (100-150 µm) is not good enough to detect
TCFA (cap thickness < 65 µm) directly and IVUS-derived TCFA definition
is based on environmental characteristics rather than features of cap itself. A
further exploration on variations of IVUS-derived TCFA definitions is required.
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Abstract. Automated processing of intracoronary optical coherence to-
mography (OCT) images represents an important issue. The aim of the
present study is to introduce a fully automated method to differentiate
healthy tissues from diseased regions of the coronary wall in in vivo OCT
imaging. A two-step framework is proposed. First, an original contour
segmentation scheme is performed to simultaneously extract the inter-
faces of the intima and media layers. Second, a set of local features is
extracted at the estimated location of the interfaces, and a classification
method is applied. Evaluated on a dataset of 50 images acquired from 10
different patients, the present detection framework demonstrated a sensi-
tivity and specificity of 80 % and 81 %, respectively, while the agreement
between manual annotations performed by two analysts was 86 %.

Keywords: Optical coherence tomography, Contour segmentation, Classifica-
tion, Coronary artery

1 Introduction

Intravascular optical coherence tomography (OCT) is an emerging catheter-
based imaging modality that enables tissues to be visualized in vivo at a high
spatial resolution (10−20 µm) and in a minimally invasive fashion. Investigation
of the inner circumference of the vessel is performed by the probe spinning along
its axis while being pulled back. The emission and reception of near-infrared
light at each angular step yields the acquisition of so called A-lines, whose echo
time and intensity are then converted into a single gray-scale image. During the
pullback acquisition, a stack of consecutive cross-sectional images is generated
along the length of the assessed artery segment.

Although OCT images are acquired online and can provide the clinician use-
ful visual insight during the intervention, image analysis is currently performed
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manually offline (Tearney et al, 2012). Such manual procedure is generally time
consuming as well as subject to variability between different analysts (Kubo
et al, 2007). Accordingly, automated processing of OCT images remains an im-
portant issue, as it would allow clinicians to use quantified information directly
during the intervention.

Various (semi)automated computerized methods have recently been intro-
duced to tackle this challenge, and have addressed several clinical applications.
Stent strut apposition, coverage and re-endothelialization was assessed by means
of strut shadow detection (Gurmeric et al, 2009), active contours (Kauffmann
et al, 2010) and peak intensity location (Ughi et al, 2012). Fibrous cap thickness
was quantified with contour segmentation approaches based on front-propagation
(Wang et al, 2012; Zahnd et al, 2014). Tissue type classification was investigated
by exploiting the backscattering coefficient (Xu et al, 2008), the attenuation co-
efficient (van Soest et al, 2010), and image texture (Ughi et al, 2013).

The aim of this study is to propose a fully automated method to detect
healthy tissues from diseased sections of the wall in in vivo OCT images. The
main contribution of the present work is the introduction of a novel segmentation
method, based on a four-dimensional (4D) front propagation scheme, and devised
to simultaneously extract the contours of the intima and media layers. A number
of texture- and geometry-based local features are then generated at the location
of the extracted contours, then a traditional classification approach is performed
to differentiate healthy and diseased tissues. The proposed framework is finally
evaluated in a set of 50 OCT images from 10 patients against the reference
annotations performed by two analysts.

2 Methods

The present framework consists of two main steps. First, a segmentation step is
carried out to extract both intima and media layers. Second, a classification step
is performed, using several features locally provided by the segmented contours.
Our rationale is the following: forcing the segmentation in diseased regions where
intima and media layers can not be perceived is likely to result in contours with
an irregular shape located on poorly contrasted regions, yielding features that are
significantly different from those extracted from healthy and contrasted regions.

2.1 Multi-layer segmentation

Healthy regions are defined as regions without plaque, where intima, media and
adventitia layers can be clearly perceived. From a single A-line perspective, the
interfaces of the intima, media and adventitia layers correspond to regions with
strong positive and negative intensity gradient, as depicted in Figure 1. The
lumen-intima interface (uppermost positive gradient, g0) can easily be extracted
by a classical gradient search. However, the intima-media and media-adventitia
interfaces are significantly more challenging to assess due to a number of factors,
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Fig. 1. OCT imaging of a human coronary artery in vivo. (a) Polar image. (b) Corre-
sponding Cartesian image. The yellow line in (a) corresponds to the yellow line in (b).
(c) Intensity profile of healthy wall tissues, corresponding to the A-line section delim-
ited by the yellow line in (a). (d) Corresponding gradient, with the extrema g0, g1, g2

and g3 delimiting the intima, media and adventitia layers (red points).

such as a weaker gradient magnitude, a lower signal-to-noise ratio, the absence
of the layers in diseased regions, and a potential variation of intima thickness.

To cope with this challenge, the present segmentation method is devised to
simultaneously extract the location of the uppermost negative (g1), lowermost
positive (g2), and lowermost negative (g3) gradients. The proposed method is
designed to process 2D images in polar coordinates (Fig. 2a). The fast marching
methodology (Cohen, 2005) was adopted to introduce a specific unidirectional
4D front-propagation scheme. Here, the 4D space corresponds to the direction
of the propagation along the circumference, plus the depth location of the three
contours (Fig. 2). This approach is ruled by three characteristics. First, the paths
should be located on gradient extrema. For this purpose, an image data term C is
used, corresponding to the vertical gradient image normalized between 0 and 1.
Second, the paths should be (nearly) parallel to the lumen-intima interface. A
spatial transformation is thus applied to generate a sub-image where the lumen-
intima interface is a straight horizontal line (Zahnd et al, 2013, 2014) and a
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Fig. 2. Multi-layer segmentation framework. (a) Cartesian image, with the lumen seg-
mentation (cyan solid line, g0). The outer circumference of the diseased section of
the wall is indicated by the blue dashed line. The intima, media and adventitia layers
are clearly visible in the healthy section. (b) Corresponding polar image. The cyan
dashed line indicates the depth of the investigated region. (c) Transformed sub-image,
where the lumen interface g0 is a straight horizontal line. (d) Cost image C of vertical
gradients, with the three estimated paths g1, g2 and g3 running along the extrema.
(e) Resulting polar image. (f) Corresponding Cartesian image.

penalty is then applied to non-horizontal displacements. Third, the paths should
describe concentric layers. Therefore, a non-crossing constraint is applied.

To simultaneously extract the optimal location for all three contours g1, g2

and g3, a single 4D cumulated cost function C is then iteratively generated as:

C(y1, y2, y3, x) = min
dy1,dy2,dy3

{
C(y1 + dy1, y2 + dy2, y3 + dy3, x− 1)

+
√

1 + κa · dyκb
1 · ω · C(y1, x) +

√
1 + κa · dyκb

2 · (1− C(y2, x))

+
√

1 + κa · dyκb
3 · C(y3, x)

}
,

(1)

with yi+1 > yi+m, yi being the depth of the ith path gi in a given A-line x and m
being the vertical margin between two paths; dyi ∈ {−n, . . . 0, . . . n}, n being the
number of reachable neighbors; κa and κb the smoothness constraint terms; and
ω ∈]0, 1[ a weighting factor preventing the uppermost path from running along
the location of the lowermost media-adventitia interface. C is initialized to zero,
and a null cost is attributed to the A-lines corresponding to the region shadowed
by the guidewire. This front-propagation scheme is run twice, namely from left
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to right and from right to left. A seed is then determined as the point where the
two fronts first collide. Finally, the optimal solution is found by back-tracking
in C from the seed to each border of the image. A graphical representation of
the segmentation framework is displayed in Figure 2.

2.2 Classification

After the segmentation step has been carried out, a classification step is per-
formed. The adaptive boosting (AdaBoost) predictive algorithm (Freund and
Schapire, 1997; Freund et al, 1999) is used for classification. Briefly, the un-
derlying principle of AdaBoost consists in iteratively adapting the weights of
simple weak classifiers in the aim to finally generate a strong classifier that is
well correlated with the ground truth annotations (i.e. the binary “healthy” or
“diseased” label manually attributed to each A-line of the image). In the present
implementation, 8 features characterizing a typical healthy wall profile (Fig. 1c)
are extracted from each A-line:
• The intensity gradient magnitude {g1, g2, g3} at the location of each of the
three extracted paths g1, g2 and g3;
• The depth-wise distance {d1,2, d1,3, d2,3} between each of the three extracted
paths, compensated with the penetration angle of the beam in the tissues;
• The mean absolute gradient magnitude {G} within the A-line;
• The index of monotonic decrease {M}, calculated as the mean absolute dis-
tance of all piece-wise permutations required to sort the intensity values of the
A-line in a monotonically decreasing fashion.

The image intensity is normalized between 0 and 1 prior to feature extraction.
To improve the robustness of the method when investigating the kth frame of the
pullback, the classification is also carried out in the k − 1st and k + 1st frames,
and the the resulting label of each A-line is determined by means of majority
voting. Finally, a morphological opening and closing operation is performed to
aggregate similar labels and get rid of outliers.

2.3 Data collection

OCT pullbacks were acquired at the Thoraxenter, Erasmus MC (Rotterdam,
The Netherlands), using the C7XR frequency-domain system and the Dragon-
fly intracoronary imaging catheter (Lightlab/St Jude, Minneapolis, MN, USA).
Image acquisition was performed with a previously described non-occlusive tech-
nique (Tearney et al, 2012). Pullbacks were acquired over a total length of 54 mm
along the vessel at 105 frames/s. The central bandwidth of the near-infrared
light was 1310 nm. The spatial resolution of the system was 20 µm and 30 µm
in the axial and lateral directions, respectively. The depth of the scan range was
4.3 mm. Acquired images were sampled at 968× 504 pixels.

2.4 Image analysis procedure

For each pullback, a set of representative frames was selected by the analyst A1.
A ground truth reference was then manually generated by A1, by applying a
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binary label (i.e. healthy or diseased) to each A-line of all analyzed frames.
To further train the classifier, manual annotations were also performed on the
two temporally adjacent (i.e. previous and next) frames in the pullback. Inter-
observer variability was also assessed by a second analyst A2 carrying out the
same annotation procedure, blinded to the results of A1. A leave-one-out vali-
dation was realized to evaluate the automated classification framework against
the generated ground truth reference labels.

2.5 Parameter settings

The present framework was applied to all images with the following parameter
settings, determined by means of a leave-one-out strategy. Smoothness constraint
terms, κa = 0.3 and κb = 0.5, weighting factor, ω = 0.1, minimal margin between
two paths, m = 75 µm, number of reachable neighbors, n = 10, length of the
gradient filter: 95 µm, kernel size of the morphological opening and closing: 7
and 60 A-lines, respectively, number of iterations for AdaBoost: 100.

3 Results and discussion

Ten patients suffering from coronary artery disease were involved in the study.
For each pullback, 5 representative and non-consecutive frames were arbitrarily
selected by A1 to be analyzed. Among the 50 analyzed images, the propor-
tion of healthy sections, as annotated by A1, was 51 % (i.e. 11247 A-lines over
22000). The layer segmentation method was applied to all analyzed images. In
healthy sections of the wall, the resulting contours corresponded well with the
anatomical interfaces for the majority of the frames (i.e. 45 out of 50), as vi-
sually assessed. In the remaining 5 cases, failure was provoked by the presence
of bright and contrasted tissues behind a thin intima-media complex, shifting
all three segmentation contours towards a deeper location. Evaluated against
the tracings performed by A1, the sensitivity and specificity of the detection
framework was 80 % and 81 %, respectively. This is to be compared with the
agreement of both analysts when performing the manual annotation, which was
86 %. Examples of detection results are displayed in Figure 3. In misclassified
regions, the main cause of failure of the framework is due to occasional over-
lapping between healthy and diseased feature values. We also observed that the
performances of the method were associated with the degree of agreement be-
tween the two analysts A1 and A2. In regions that were assigned the same label
by A1 and A2, the sensitivity and specificity of the detection framework was
82 % and 86 %, respectively, whereas in regions that were assigned two different
labels, the performances decreased to 51 % and 65 %, respectively. By forcing
the segmentation in diseased regions where the anatomical layers can not be
perceived, the method is expected to yield features that can easily be differen-
tiated from those extracted from healthy regions. Further studies will focus on
the application of the present segmentation method to segmenting the contours
of different tissue types, such as calcified plaques and thin cap fibroatheromas.
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Fig. 3. Representative examples of healthy wall detection, for the automatic classifi-
cation method (magenta), compared to the manual annotations performed by the two
analysts (green and orange), in OCT pullbacks acquired in four different patients, for
successful detection of the healthy section (a,b) and failures (c,d). The specificity in (c)
is poor, as the diseased region in 4-6 o’clock presents a contrasted and heterogeneous
pattern that is detected as healthy layers. The sensitivity in (d) is poor, as most of the
healthy region (3-11 o’clock) presents diffuse layers with weak gradient magnitudes.

4 Conclusion

A fully automated method to detect healthy sections of the wall in OCT im-
ages was presented. The introduced framework relies on an original multi-layer
segmentation approach, devised to locally extract texture- and geometry-based
features that describe the intima and media interfaces. With performances close
to inter-analyst variability, the proposed framework represents a promising ap-
proach to assist clinicians with quantified information during intervention.
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Abstract. Studies on the natural course of plaque progression require serial 

comparisons of local measurement between baseline and follow-up Intravascu-

lar Ultrasound (IVUS) pullback imaging data. In this paper, we consider the 

problem of automatically estimating the spatiotemporal registration between 

IVUS pullback pairs. Unlike the existing methods, which rely on coronary vas-

cular morphology and plaque composition, we present a novel approach that is 

guided by side-branches. Since side-branches are the only landmarks that pro-

vide consistent correspondence in two time points, we use them as anchors to 

control the follow-up pullback: to scale the coordinates along the longitudinal 

direction by using a piecewise transform, and to generate rotational shift within 

the cross-sectional image by applying a Catmull-Rom spline. Experimental re-

sults on 31 in-vivo IVUS pullback pairs show that our method is efficient, and 

can significantly reduce discrepancies between pullback pairs. 

1 Introduction 

Prediction of the coronary vasculature at high risk of atherosclerotic disease progres-

sion has the potential of affecting treatment options or allowing novel pre-emptive 

approaches to treat patients with subclinical atherosclerosis. Studies of the relation-

ships between local coronary morphology, plaque composition, blood flow dynamics, 

and atherosclerotic plaque progression at several-month intervals can offer insights in 

the natural course of plaque development, consequently enabling predictions about 

atherosclerotic disease progression from initial imaging of coronary vessel [1-3]. In-

travascular ultrasound (IVUS) is a valuable and clinically available imaging tool to 

examine the progression of coronary artery disease [1-3]. For the purposes of serial 

measurement comparisons, the baseline and follow-up IVUS data must be registered.  

    Due to the difficulties of IVUS registration task (such as motion artifacts, changes 

in blood pressure, vessel morphology, plaque composition etc.), most previous studies 

registered IVUS pullbacks manually, which is a tedious and time consuming process. 

Automated registration has attracted research interests in recent years. Alberti et al. 

[4] first presented an automated framework for the temporal alignment of IVUS pull-
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backs. They developed a dynamic time warping technique which utilized multiple 

temporal profiles representing vessel area and plaque composition. Different from 

their work, Timmins et al. [5] focus on the co-registration of two aligned cross-

sectional IVUS frames. Their method is mainly based on image parameters including 

arterial thickness, Virtual Histology (VH)-IVUS defined plaque constituents [6], and 

VH-IVUS perivascular imaging data. Both of these methods try to use vessel area and 

plaque composition to register IVUS pullbacks. However, using these features is not 

recommended in general, especially when the degree of disease progression, which 

may cause pronounced changes to the plaque appearance from baseline to follow-up. 

To alleviate these problems, Vukicevic et al. [7] propose to use vessel shape as the 

matching criterion. The basis for measuring all the before-mentioned features relies 

on the segmentation of lumen and adventitia of IVUS images, which is a user-

dependent and error-prone task. Furthermore, the accuracy of the VH correlation of 

plaque constituent characterization has recently been called into question [2, 3]. 

    Unlike previous methods, our method does not rely on the segmentation of luminal 

and external elastic lamina borders or the identification of plaque components. We 

propose a simple but effective approach to automatically align and register the base-

line and follow-up IVUS pullbacks. Considering that the side-branches provide the 

most information and are also the only landmarks that provide consistent correspond-

ence in two time points, we use them as anchors to control the follow-up pullback to 

scale the coordinates along the longitudinal direction and to generate rotational shift 

within the cross-sectional image. We evaluated our method on baseline and follow-up 

IVUS pullbacks for one vessel of 31 patients each. 

2 Methods 

2.1 Semi-Automated Identification of Side-branches 

After gating the IVUS pullbacks by R-wave of electrocardiogram (ECG) signal, side-

branches are identified using a semi-automated approach [8] with the center of bifur-

cation, distal point on the branching vessel, and one or more intermediate control 

points interactively identified. A 3-D trajectory of the side-branch is generated by 

computing a uniform cubic B-spline over the range of user-identified control points. 

The control points are adjusted based on the segmentation, and the spline is recom-

puted. Finally, a 3-D side-branch is constructed around the spline as a generalized 

cylinder, using the radius computed from the 2-D segmentation. 

2.2 Registration of Baseline and Follow-up Arterial Segments 

Because the IVUS space is in cylindrical coordinates, corresponding to a longitudinal 

value Z and an angular value θ, a rubber sheet transform similar to an affine transform 

in the cylindrical IVUS space is sufficient for registration. However, if there exists 

more than one side-branch, a single affine transform is inadequate to represent possi-

ble multiple directions of rotational distortion. Attempting to construct the transfor-
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mations piecewise presents a significant problem in the form of dependencies be-

tween the pieces. It was demonstrated that a piecewise affine technique is robust in 

medical image registration task [9]. Thus our registration task has been broken into 

two components, computed separately: a longitudinal alignment transform, computed 

along the length of the pullback, with a scaling term computed separately for each 

pair of landmarks; and a cross-sectional rotational transform, computed using a Cat-

mull-Rom spline [10] with a control point set at each pair of landmarks. This registra-

tion design is in accordance with the fact that the scale difference is driven by catheter 

speed, while the rotational distortion by catheter motion and/or initial position. Note 

that we chose Catmull-Rom spline because it ensures the spline curve cross the con-

trol points. 

Alignment. Given the z coordinates of two adjacent landmarks lm(i)bl, lm(i+1)bl from 

the baseline pullback: Z(lm(i)bl) and Z(lm(i+1)bl), and the z coordinates of correspond-

ing follow-up coordinates (landmarks): Z(lm(i)fu) and Z(lm(i+1)fu), treating the base-

line as the reference, the alignment relationship between baseline and follow-up is 

defined by the following equations: 
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where, Z(jbl) represents the z coordinate of the jth image frame located between the 

two baseline landmarks lm(i)bl, and lm(i+1)bl, and Z*(jfu) is the corresponding z coor-

dinate in the follow-up pullback. 

Rotation. The control points for the Catmull-Rom spline are selected by first finding 

the centroid of the aligned bounding box surrounding each marked side-branch, then 

computing the angle between the centroids (follow-up is subtracted from base-line). 

From this angle, a control point value is selected based on the criteria of minimizing 

the change in angle from the previous control point (i.e., given the circular wrapping 

nature of angles, if 4 different representations of an angle all transform the follow-up 

side-branch centroid to the baseline’s position, the correct angle should be the one 

that requires the minimal amount of movement from the previous control point loca-

tion). The procedure is described in detail in Table 1.  

Once obtaining the Catmull-Rom spline interpolation function fb(.) based on the 

control points, it can be used to estimate the rotational distortion θ = fb (Z*(jfu)) for 

each aligned coordinate Z*(jfu). 
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Table 1. Procedure for identifying control points for rotation spline 

Given all marked landmarks LM ϵ (lm(i)bl, …, lm(N)bl, lm(i)fu, …, lm(N)fu), where N is the 

number of landmarks in a pullback. 

for i = 1 : N, 

Compute the side-branch angles for each landmark pairs: θ(i)bl = arctan(C_y(i)bl, 

C_x(i)bl), θ(i)fu = arctan(C_y(i)fu, C_x(i)fu), where C_y and C_x are the y and x coordinates 

of side-branch centroids, respectively; 

Compute: Δ0 = θ(i)bl - θ(i)fu, Δ1 = Δ0 + 360, Δ2 = Δ0 - 360; 

 1
, {1,2,3}

argmin
k

i k i
k

 
  

 

   ; 

ControlPoints[i] = θΔi; 

end 

 

3 Experiments 

3.1 Data  

Data used in this study were taken from the HEAVEN study [11] which contains 

paired baseline and twelve-month (9-21 months) follow-up IVUS data from patients 

with stable angina. The IVUS phased-array 20MHz probe (Eagle Eye, Volcano Cor-

poration, Rancho Cordova, CA, USA) with automatic pullback (research pullback, 

model R-100) at 0.5 mm/s was performed through the coronary artery. A subset of 31 

cases (one vessel per patient) where the data was of sufficient image and R-wave 

gating quality, with a minimum of 25 mm overlap between baseline and follow-up 

pullbacks, was selected to perform our registration experiment.  

3.2 Software Tool 

We developed a semi-automated software tool for IVUS registration. For the current 

version, only side-branches are used as anchors. Other landmarks are identified in 

terms of the user defined locations, but the identification is coarser. With our tool, 

upon load, a list of both baseline and follow-up branches previously obtained as de-

scribed in section 2.1 is displayed. When the user selects a branch, the program navi-

gates to it, and then highlights all branches in the opposite pullback as cursors which 

can be selected to indicate a match. Once a sufficient number of corresponding 

branches have been marked by the user, the frame correspondences are determined by 

our automated registration method (if two branches overlap along the longitudinal 

direction, it is unnecessary to mark both). Fig. 1(a) shows the software interface and 

the pullback images before registration, while Fig. 1(b) shows the appearance of the 

image after the registration transform.  
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Fig. 1. IVUS registration. Upper figure: Tool used to capture landmark correspondence. The 

upper part is the baseline pullback and the lower one is the original follow-up pullback. Green 

boxes mark the branch selected from the tree control on the left. Red boxes represent all availa-

ble branches in the opposite pullback for matching. Light blue contours are 3D branch meshes 

overlaid on 2D cross-sectional images. Lower figure: Patient depicted in the upper figure, after 

the registration transform is applied to the follow-up pullback, cropping both pullbacks to the 

overlapping region. 

3.3 Results 

Sample Qualitative Results. Verification of the registration algorithm was first per-

formed by visually examining the image warping and border displacement that was 

performed with the computed transformation. The lumen and adventitia borders were 

obtained using a well validated computer-aided IVUS segmentation tool [12] by ex-

pert cardiologist. Fig. 2 shows two examples of registration results in longitudinal 

view. In Fig. 2(a), the visual inspection looks correct even when artifact exists in the 

lumen region. In Fig. 2(b), registration errors which may have been caused by a 

stuck/accelerated transducer can be observed in the right part (i.e., the proximal end) 

of the pullbacks. Corresponding to Fig. 2, Fig. 3 provides examples of registration 

results obtained in cross-sectional view. For example, in Fig. 3(a), from left to right 
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are baseline image frame (located at the green dash lines in Fig. 2(a)), unregistered 

follow-up frame (the same z coordinate with baseline frame), linear fitting frame (as 

mentioned in [4]), and our registered frame, respectively. Since pullbacks are approx-

imately one year apart, and therefore some physiological change is inevitable, we do 

not expect a zero error registration. However, we seek to demonstrate a successful 

minimization of that error.  

 

Fig. 2. Two examples of registration results in longitudinal view. Upper images are the baseline 

pullbacks, lowers ones are the follow-up pullbacks. (a) A good result. (b) Registration error. 

 

Fig. 3. Cross-sectional IVUS images. (a) From left to right: a baseline frame indicated by the 

green dash line in Fig. 2(a); its corresponding follow-up unregistered frame, linear fitting 

frame, and our registered frame, respectively. (b) Corresponds to the case in Fig. 2(b). 

Quantitative Results. For quantitative evaluation, the metrics of the registration ac-

curacy are built upon a comparison of the morphological and VH indices between 

baseline and follow-up post registration. Most of the indices are those generally ac-
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cepted as reflecting local vascular disease severity and were utilized in the analysis of 

coronary wall properties in previous studies [1-3, 13]. Registered and unregistered 

differences are evaluated in our analysis. Fig. 4 shows all these indices registered 

versus unregistered on all 31 IVUS pullback pairs, normalized against the maximum 

value of each to facilitate visual comparison. It is quite clear that the discrepancies 

between pullbacks are dramatically reduced by our proposed registration. Note that 

these quantitative indices were based on the identified lumen/plaque and me-

dia/adventitia interfaces in 2D/3D also by using [12]. We run our C++ code on a 64-

bit Windows 7 PC, which has a 3.33 GHz Xeon CPU and 24 GB of RAM. For a gated 

pullback pair with identified side-branches, the average computation time is less than 

3 seconds. 

 

Fig. 4. Registered versus unregistered differences across all morphologic and VH indices. Note 

that all these indices are calculated in wedge-like image sector with 5° central angle. 

4 Conclusion 

In this paper, we propose a two-step approach which first uses a piecewise transform 

to scale the coordinates along the longitudinal direction and then applies a Catmull-

Rom spline generated rotational shift to compensate for rotational variation between 

the baseline and follow-up IVUS pullbacks. Experimental results on 31 IVUS pull-

back pairs demonstrate that the proposed method is efficient and robust, which is 

achieved by registration guided by side-branches, given existing techniques more 

often rely on the segmentation of IVUS images and the recognition of plaque compo-

nents. Hence our method is more efficient, and robust to morphologic and plaque 

component variations frequently present in longitudinal studies. In our future work, 

we plan to use image matching approaches to refine the unreliable alignment and 

rotation results which are caused by stuck/accelerated transducer pullback and/or 

angular twisting between consecutive images. 

50



Reference 

1. Stone, G. W., Maehara, A., Lansky, A. J., de Bruyne, B., Cristea, E., Mintz, G. S., Mehran, 

R., McPherson, J., Farhat, N., Marso, S. P., et al.: A prospective natural-history study of 

coronary atherosclerosis. New England Journal of Medicine, 364(3), 226-235 (2011) 

2. Samady, H., Eshtehardi, P., McDaniel, M. C., Suo, J., Dhawan, S. S., Maynard, C., Tim-

mins, L. H., Quyyumi, A. A., Giddens, D. P.: Coronary artery wall shear stress is associat-

ed with progression and transformation of atherosclerotic plaque and arterial remodeling in 

patients with coronary artery disease. Circulation, 124(7), 779-788 (2011) 

3. Stone, P. H., Saito, S., Takahashi, S., Makita, Y., Nakamura, S., Kawasaki, T.,  

Takahashi, A., Katsuki, T., Nakamura, S., Namiki, A., et al.: Prediction of progression of 

coronary artery disease and clinical outcomes using vascular profiling of endothelial shear 

stress and arterial plaque characteristics: the prediction study. Circulation, 126(2), 172-181 

(2012) 

4. Alberti, M., Balocco, S., Carrillo, X., Mauri, J., Radeva, P.: Automatic Non-rigid Tem-

poral Alignment of Intravascular Ultrasound Sequences: Method and Quantitative Valida-

tion. Ultrasound in Medicine and Biology, 39(9), 1698-1712 (2013) 

5. Timmins, L., Suever, J., Eshtehardi, P., McDaniel, M., Oshinski, J., Samady, H., Giddens, 

D.: Framework to Co-register Longitudinal Virtual Histology-Intravascular Ultrasound 

Data in the Circumferential Direction. IEEE Transactions on Medical Imaging, 32(11), 

1989-1996 (2013) 

6. Nair, A., Kuban, B. D., Tuzcu, E. M., Schoenhagen, P., Nissen, S. E., Vince, D. G.: Coro-

nary plaque classification with intravascular ultrasound radiofrequency data analysis. Cir-

culation, 106(17), 2200-2206 (2002) 

7. Vukicevic, A. M., Stepanovic, N. M., Jovicic, G. R., Apostolovic, S. R., Filipovic, N. D.: 

Computer methods for follow-up study of hemodynamic and disease progression in the 

stented coronary artery by fusing IVUS and X-ray angiography. Medical & Biological En-

gineering & Computing, 52(6), 539-556 (2014) 

8. Downe, R. W., Wahle, A., Garvin, J., Kovárník, T., Hoŕk, J., Lopez, J. J., Sonka, M.: Iden-

tification and 3-D modeling of coronary branchesin intravascular ultrasound. In MICCAI 

Workshop in Computation and Visualization for (Intra) Vascular Imaging, CVII 2011, pp. 

15-22 (2011) 

9. Audette, M. A., Brooks, R., Funnell, R., Strauss, G., Arbel, T.: Piecewise affine initialized 

spline-based patient-specific registration of a high-resolution ear model for surgical guid-

ance. In MICCAI Workshop in Image Guidance and Computer Assistance for Soft-Tissue 

Interventions, IGSTI 2008, pp. 1-10 (2008) 

10. Catmull, E., Rom, R.: A class of local interpolating splines. Computer Aided Geometric 

Design, 74, 317-326 (1974) 

11. Kovarnik, T., Mintz, G. S., Skalicka, H., Kral, A., Horak, J., Skulec, R., Uhrova, J., 

Martasek, P., Downe, R. W., Wahle, A., et al.: Virtual histology evaluation of atheroscle-

rosis regression during atorvastatin and ezetimibe administration. Circulation Journal, 

76(1), 176-183 (2011) 

12. Sun, S., Sonka, M., Beichel, R.: Graph-Based IVUS Segmentation with Efficient Comput-

er-Aided Refinement. IEEE Transactions on Medical Imaging, 32(8), 1536-1549 (2013) 

13. Wahle, A., Lopez, J. J., Olszewski, M. E., Vigmostad, S. C., Chandran, K. B., Rossen, J. 

D., Sonka, M.: Plaque development, vessel curvature, and wall shear stress in coronary ar-

teries assessed by X-ray angiography and intravascular ultrasound. Medical image analy-

sis, 10(4), 615-631 (2006) 

51



Using spatiotemporal patterns of the arterial
wall to assist treatment selection for carotid

atherosclerosis

Aimilia Gastounioti, Marinos Prevenios, and Konstantina S. Nikita

School of Electrical and Computer Engineering, National Technical University of
Athens, Greece, gaimilia@biosim.ntua.gr

Abstract. This work addressed a major clinical challenge, namely valid
treatment planning for carotid atherosclerosis (CA). To this end, it in-
troduced a novel computer-aided-diagnosis (CAD) scheme, which relies
on the analysis of ultrasound videos to stratify patient risk. Based on
Hidden Markov Models (HMM), it is guided by spatiotemporal patterns
representing motion and strain activity in the arterial wall and it acts as
a voice-recognition analogue. The designed CAD scheme was optimized
and evaluated on a dataset of 96 high- and low-risk patients with CA, by
investigating patterns with the strongest discrimination power and the
optimal HMM parameterization. It was concluded that the optimized
CAD scheme provides a CAD response with accuracy between 76% and
79%. The introduced CAD scheme may serve as a valuable tool in the
routine clinical practice for CA toward personalized and valid therapeu-
tic decision for the disease.

Keywords: carotid atherosclerosis; computer-aided diagnosis; ultrasound;
motion patterns; Hidden Markov Models

1 Introduction

Carotid atherosclerosis (CA) is a chronic degenerative disease, gradually re-
sulting in the formation of lesions (plaques) in the inner lining of the carotid
artery. The fact that (a) CA is the main cause for stroke, (b) the morbidity,
disability and mortality rates associated with stroke are increased, and (c) the
current clinical practice for treatment selection (TR1: carotid revascularization
or TR2: conservative therapy) has proved insufficient, poses the development
of computer-aided-diagnosis (CAD) schemes for CA among the current major
clinical needs [1].

Traditionally, vascular physicians select ultrasound (US) examination in di-
agnosis and follow-up for patients with CA. Moreover, the use of affordable
imaging techniques, such as US, in CAD is a crucial factor. Therefore, US image
analysis allows to upgrade the potential of a low-cost routine examination into a
powerful tool for objective and personalized clinical assessment, i.e. risk stratifi-
cation in atherosclerotic lesions. As a result, the development of CAD schemes,
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which are based on US image analysis, is considered a grand challenge by the
scientific community [2].

Although arterial wall dynamics constitute the direct mechanism for neu-
rological disorders of CA, the role of motion features in CAD remains almost
unexplored [2]. A few studies have investigated potential motion-based risk in-
dices [3], while the incorporation of such indices in CAD schemes was recently
attempted for the first time [4]. However, none of the related studies has investi-
gated the role of motion patterns of the arterial wall in discriminating vulnerable
atherosclerotic lesions.

This study focuses on arterial-wall spatiotemporal patterns, rather than mere
motion indices, in an attempt to further elucidate the potential of arterial wall
dynamics in CAD for CA toward enhancing validity in treatment planning. To
this end, it designs a novel CAD scheme, which combines the analysis of US
image sequences (videos) with Hidden Markov Models (HMM) and it is guided
by spatiotemporal patterns representing kinematic and strain activity in the
arterial wall. The designed CAD scheme is applied to US video recordings of 96
high- and low-risk patients with CA to identify the optimal parameterization for
HMM and the spatiotemporal patterns with the strongest discrimination power.

2 Material & Methods

The proposed CAD scheme relies on ultrasound-video-based spatiotemporal pat-
terns of the arterial wall to characterize a patient as high- or low-risk, and ac-
cordingly advise on the most suitable therapy (Fig. 1). In correspondence with a
voice-recognition system, the arterial wall dynamics which account for stable or
vulnerable atherosclerotic lesions vary among patients, in the same way as iden-
tical words can be pronounced in different ways by humans with different voices.
The spatiotemporal patterns correspond to the words (sets of phonemes) and
a lexicon attributes the label ”high-risk” or ”low-risk” patient (or equivalently
”TR1” or ”TR2”) to each word. The design principles of the CAD scheme, as
well as the optimization and evaluation procedures which were followed to in-
vestigate its potential, are hereafter presented in detail.

2.1 Design Issues

Motion analysis is performed for five regions of interest (ROIs) on a B-mode US
video of a longitudinal section of the arterial wall (Fig. 1). The particular imag-
ing modality allows the estimation of tissue motion in two dimensions, namely
longitudinal, i.e. along the vessel axis, and radial, i.e. along the vessel radius. The
five ROIs are the posterior (PWL) and anterior wall-lumen (AWL) interfaces,
the plaque top (PTS) and bottom surfaces (PBS), and the plaque region which
is contoured by PTS and PBS.

All pixels composing the five ROIs are selected as motion targets. From
the target-wise radial and longitudinal motion waveforms which are produced
using ABMKF−K2 [3], 146 spatiotemporal patterns (120 kinematic and 26 strain
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Fig. 1: Workflow for generating a CAD response (CADr) using ultrasound-video-
based spatiotemporal patterns of the arterial wall. CM: classification model.

waveforms) are estimated according to the schematic representation in Fig. 2.
Specifically, 24 kinematic waveforms are produced for each ROI by estimating
target-wise velocity and displacement waveforms and then computing the mean
and median waveforms over space (Fig. 2(a)). Based on similar steps and recently
published mathematical formulas [5], strain waveforms are produced to express
relative movements between (a) PWL and AWL, (b) PBS and PTS, (c) PBS and
PWL or AWL, and (d) PTS and PWL or AWL (if the plaque was located at
the posterior or the anterior wall, respectively), and local deformations in PWL,
AWL, and PTS (Fig. 2(b)).

The stage of patient characterization as ”high-risk” or ”low-risk” is imple-
mented with two majority voting schemes, each of which is fed with a subset of n
spatiotemporal patterns (with n ≤ 146) and is based on n classification models
(one for each spatiotemporal pattern). Each classification model is an implemen-
tation of an HMM, a stochastic state automaton, which, if properly trained, can
decode an observation sequence (word) and hence recognize its underlying pat-
terns [6]. Due to the periodic nature of arterial wall motion, the spatiotemporal
patterns are periodically reproduced. Therefore, a left-to-right HMM, consisting
of five states, was considered a suitable choice [7].

The first voting scheme generates the probability of the patient belonging
in the ”high-risk” group (V1), while the second one estimates the probability
to be in ”low-risk” (V2). The vote of each scheme (Vj , with j ∈ {1, 2}) is es-
timated using the classification outputs, p ∈ {0 : false, 1 : true}, and some
weights, w ∈ [0, 1], of the classification models (eq. (1)). The final CAD response
(CADr) is produced using eq. (2), with ”-1”, ”0”, and ”1” representing ”low-
risk”, ”not sure”, and ”high-risk” potential results, respectively. The values of
the parameters n and w were defined based on the optimization and evaluation
results (for more details, see sections 2.2 and 3).
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(a)

(b)

Fig. 2: Schematic representation of the production of (a) 120 kinematic and (b)
26 strain waveforms. PWL, AWL, PBS, and PTS are defined in text.

V1 =

[∑n
i=1(piwi)

n

]
∈ [0, 1], V2 = −

[∑n
i=1(piwi)

n

]
∈ [−1, 0] (1)

CADr = round to integer

(
V1 + V2

)
∈ {−1, 0, 1} (2)

2.2 Optimization & Evaluation

The optimization and evaluation of the designed scheme relied on spatiotemporal
patterns for 96 patients (aged 50−90 years) with established CA (stenosis >50%)
[4]. For each patient, the carotid artery was scanned in the longitudinal direction
according to a standardized protocol (transducer, linear array 12 MHz; dynamic
range, 60 dB; persistence, low) and a B-mode US video was recorded at a rate
higher than 25 frames/s for at least 3 (2− 3 consecutive cardiac cycles). Among
those patients, 20 had experienced an ischemic cerebrovascular event (stroke
or transient ischemic attack) associated with the carotid stenosis (”high-risk”
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group), while 76 had no neurological symptoms (”low-risk” group) within a 6-
month time period from the time of examination.

HMMs were implemented using the HTK Speech Recognition Toolkit, in
which input signals are first sampled and converted to Mel-frequency cepstral
coefficients; training is achieved through the Baum-Welch method, which has
been employed successfully in cardiovascular applications [7,8]. In this study,
a separate HMM model was implemented for each type of spatiotemporal pat-
tern and it was fed with the corresponding waveforms for all patients. Each
HMM was parameterized in terms of (a) the implementation with monophones
or triphones, where each word consists of three or nine phonemes, respectively,
and (b) the preprocessing stage. The latter parameter involved two scenarios,
in which the spatiotemporal patterns were (1) scaled and (2) not scaled in time
to the maximum video duration among all patients. The optimization of each
HMM lied in the maximization of the classification accuracy (i.e. percentage of
correctly classified cases) for the corresponding spatiotemporal pattern, which
was measured using leave-one-out cross validation [9]. In leave-one-out, a single
observation (patient) is used as the testing sample, and the remaining observa-
tions compose the training dataset; this is repeated (round robin) such that each
observation is used once as the testing sample.

3 Results

Fig. 3 is a graphical presentation of the maximum classification accuracy, which
was achieved for each spatiotemporal pattern by the corresponding optimized
HMM. The classification performance ranged between 57% and 81%, and the
average performance (over the 146 spatiotemporal patterns) was 70%.
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Fig. 3: Maximum classification accuracy for each type of spatiotemporal pattern
of the arterial wall, using the corresponding optimized HMM.
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Among all spatiotemporal patterns, we identified those with the strongest
discrimination power (fig. 4), i.e. those which yielded a high (> 75%) average
value of specificity (i.e. correctly classified ”low-risk” cases) and sensitivity (i.e.
correctly classified ”high-risk” cases). For those n = 24 spatiotemporal patterns,
Table 1 includes a short description, the most suitable HMM parameterization
according to the optimization procedures, and the corresponding sensitivity and
specificity results.

Based on the above results, the majority voting schemes of the final CAD
scheme are fed with the spatiotemporal patterns of Table 1, they consist of the
corresponding optimized HMMs, and the weights w in V1 and V2 (eq. (1)) equal
the corresponding sensitivity and specificity values, respectively.
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Fig. 4: Zoom in the (a) sensitivity and (b) specificity values for the spatiotem-
poral patterns with the strongest discrimination power.

4 Discussion

This work addressed a major clinical challenge, namely valid treatment planning
for CA. In this direction, it introduced a novel image-driven CAD scheme, which
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Table 1: 24 spatiotemporal patterns with the strongest discrimination power. For
each case, the encoding of the pattern according to Fig. 2, a short description, and
the specificity and sensitivity values which were achieved by the corresponding
HMM (together with the corresponding parameterization) are presented.

Spatiotemporal pattern Performance HMM

# Description Specificity Sensitivity parameterization

K1 PWL [mean] LV 80.30% 70.00% nt1
K18 PWL [median] abs. RV 71.21% 85.00% ts1
K20 PWL [median] RD 74.24% 75.00% ts1
K21 PWL [median] TD 68.18% 85.00% ts1
K24 PWL [median] abs. RD 69.70% 85.00% ts1
K36 AWL [mean] abs. RD 87.88% 75.00% ts1
K57 PBS [mean] TD 80.30% 75.00% ts1
K60 PBS [mean] abs. RD 83.33% 70.00% ts1
K64 PBS [median] VA 72.73% 80.00% ts1
K68 PBS [median] RD 72.73% 80.00% ts1
K69 PBS [median] TD 77.27% 75.00% ts1
K76 PTS [mean] VA 81.82% 80.00% ts1
K88 PTS [median] VA 84.85% 70.00% ts1
K90 PTS [median] abs. RV 81.82% 70.00% ts1
K91 PTS [median] LD 80.30% 75.00% ts1
K94 PTS [median] TD 80.30% 70.00% ts1
K95 PTS [median] abs. LD 71.21% 80.00% ts1
K100 plaque [mean] VA 78.79% 80.00% nt1
K104 plaque [mean] RD 71.21% 80.00% ts1
K105 plaque [mean] TD 74.24% 80.00% ts1
K112 plaque [median] VA 74.24% 80.00% nt1
K115 plaque [median] LD 56.06% 100.0% ts1
S1 PWL & AWL [mean] RS 65.15% 85.00% ts1
S18 PTS & PWL [median] LS 75.76% 85.00% nt1

Average value 76% 79%

L: longitudinal; R: radial; T: total; (for x={L,R,T}) xS: x strain; xD: x displacement; xV: x velocity; DA: dis-
placement angle; VA: velocity angle; HMM {(ts1): monophones, time-scaling; (nt1): monophones, no time-scaling;};

incorporates spatiotemporal patterns of the arterial wall, in a framework of a
voice-recognition analogue. This implementation allowed for elucidating the role
of motion features, and in particular kinematic and strain patterns rather than
mere mobility indices, in risk stratification in CA. To the best of the authors’
knowledge, no similar attempts have been reported in the literature.

The proposed CAD scheme is able to assist treatment selection with accuracy
between 76% and 79% (Table 1). Given the results presented by related studies
in the field [2] and the CAD performance of the existing clinical practice on
the same dataset [4], the aforementioned results are very encouraging for the
potential of arterial-wall-motion patterns in CAD for CA. The final CAD scheme
relies on 22 kinematic and 2 strain patterns which are related with the mobility
of all the selected ROIs. This conclusion further reinforces the argument that
the motion activity of the atherosclerotic lesion itself and healthy parts of the
wall close to the lesion are equally important in risk stratification in the disease
[3], [4].

A significant contribution of this study with respect to the related literature
is that it suggested that the phenotype of high- and low-risk CA differs in terms
of not only mobility indices describing motion properties, but also in motion tra-
jectories and strain patterns. This conclusion remains to be further investigated
in future studies on larger datasets, which will reveal the full potential of the
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presented approach. In the same line of work, the effect of input variability (ex.
frequency and frame rate in US image recordings) on HMM performance will be
examined, as well.

In conclusion, the introduced CAD scheme may serve as a valuable tool in
the routine clinical practice for CA, while it could be further enriched with other
temporal features, such as the arterial pressure and heart rate. Both the design
principles and the results of this study are expected to motivate the incorpo-
ration of motion analysis and spatiotemporal patterns in future related studies
designing CAD tools for CA toward valid discrimination of patients in high-risk
for stroke, which need to undergo carotid revascularization to prevent neurolog-
ical disorders, from low-risk ones, who shoud avoid unnecessary interventions.
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Abstract. We propose a method for extracting quantitative hemody-
namic information, such as the time varying volumetric flow rate from im-
age sequences in the form of 2D Digital Subtraction Angiography (DSA)
acquisitions. An intermediary 3D+t image representation is created by
backprojecting the 2D intensities to a working volume. Dense 3D flow
field estimation adapted to the tubular vascular geometries, is then used
to recover displacement fields representing fluid motion. Whereas previ-
ous related attempts performed calculation within the 2D image domain
only, our proposed method quantifies blood flow directly within the 3D
vascular representation, which allows constraints motivated by physical
principles, to be applied for regularization. From the extracted dense 3D
flow fields, quantities of clinical interest such as the volumetric flow rate
are derived. Our experimental setup for validating our proposed algo-
rithm involves synthetic and phantom datasets. Whereas the phantom
data results only allows for qualitative result inspection due to missing
ground truth information, for the synthetic cases, flow rate measurements
are quantitatively validated.

1 Introduction

Cerebrovascular diseases such as aneurysms, arteriovenous malformations (AVMs),
and stenoses impose significant health risks to the population. Decreased oxygen
supply and an elevated risk of haemorrhage are only a couple of potential con-
sequences induced by changes in local hemodynamics resulting from alterations
in vascular morphology. To combat these adversarial effects and restore healthy
flow rates, minimally invasive catheterization procedures are routinely consid-
ered. Here, endovascular tools such as guide wires and catheters, are introduced
into the vascular system under continuous X-ray imaging. Further injection of
radio opaque dye (contrast agent) makes translucent vessels visible and gives in-
sight into pathological findings in more detail. This imaging technique is called
X-ray angiography.

Observing the evolution of contrast agent within the vessels, experienced
interventionalists are able to gain a qualitative understanding of functional in-
formation on blood flow. However, this interpretation is highly subjective. Au-
tomated extraction of quantitative information, such as volumetric flow rate,
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from angiographic X-ray acquisitions would benefit decision making and improve
patient care by providing accurate and reproducible measurements of relevant
physiological parameters.

Digital Subtraction Angiography (DSA) provides transmittance images of
only the vasculature from either a static view or a rotational trajectory of an
angiographic C-arm device.

This is achieved by first acquiring a non-contrasted mask X-ray image se-
quence only showing background information, which is then subtracted from the
frames of the subsequent contrasted angiographic sequence. 2D DSA imaging
serves as a good candidate for the flow quantification problem as it is readily
available in the clinics and the image intensity distribution incorporates valuable
flow information due to the non-uniform mixing of blood with contrast agent.
A fundamental shortcoming of 2D planar projection images, however, relates to
the well-known angiography artefacts such as vessel overlaps and foreshortening,
which may induce intensity values that are no longer in correspondence to flow
assumptions.

A complete overview of early developments in quantifying flow behavior based
on 2D DSA sequences is given in [1]. A more recent model fitting approach [2]
optimizes parameters of a simplified flow model to match the observations. In
order to retain tractability of the optimization process the method uses a small
number of model parameters, which limits the ability to describe complex inflow
patterns.

Transmittance images of fluid flows satisfy certain conservation laws similar
to those associated with the brightness constancy assumption (BCA). For this
reason, the application of methods that yield dense flow fields and satisfy these
laws, serves as a physically plausible basis to recover flow information without
enforcing artificial modeling assumptions. Recent development in flat panel de-
tector technology enabling high speed acquisitions, has made the application of
techniques capturing inter-frame displacement of fluid elements possible. Previ-
ously, a traditional optical flow approach has been pursued to yield dense 2D
flow fields that are used as features for detecting flow abnormalities [3]. A more
physically correct approach has been introduced in [4], where a modified data
term is used in a setup estimating fluid displacement in a 1D modeling domain
of the projected vessel centerline. The rationale for the reduced dimensionality
is that this way, large fluid displacements can be recovered through the implicit
geometrical constraint. An extension to two dimensions has been introduced in
[5] employing a coordinate transformation to enable the estimation of fast flows
in the original image data. A critical challenge for optical flow approaches oper-
ating in the DSA image domain is the projected nature of the data that induces
information loss. Flow in complex 3D vascular structures is mapped to a pla-
nar domain, and hence, occlusion and foreshortening routinely compromise the
interpretation of flow behavior at the affected sites.

4D DSA imaging is a recent development that essentially describes time-
resolved 3D reconstructions of the flow volume from 2D DSA projection images.
It enables the flow quantification problem to be formulated in three dimen-
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Fig. 1. Illustration of the data flow: First an intermediate series of backprojection
volumes is created from the DSA images, dense flow fields are then estimated followed
by the extraction of flow rates.

sions where the previously mentioned shortcomings of 2D DSA sequences are no
longer present. In this paper, for the very first time, we propose an image-based
4D blood flow quantification algorithm yielding dense 3D flow velocity fields.
We develop methods to efficiently and robustly recover fluid displacement and
derive quantities of clinical interest, such as the volumetric flow rate from 3D+t
velocity fields. Employing 3D geometric representation from 4D DSA datasets,
our method can overcome limitations of existing 2D approaches for handling
occlusions and geometric distortions while expanding the capabilities of flow
quantification methods as a higher degree of regularity can be prescribed in the
flow solution along the vessels in the reconstructed 3D space.

2 Materials and methods

The structure of our proposed image-based flow estimation method is depicted in
Fig. 1. A significant contribution of our proposed method is the flow estimation
within an intermediary 3D representation. First, 2D projection images showing
the inflow of the contrast agent are used to reconstruct a corresponding sequence
of 3D volumes (see section 2.1). In a subsequent dense flow estimation step (see
section 2.2), 3D+t velocity fields of the imaged fluid are obtained. For this step
a computational domain tightly encompassing the vessel tree is considered to
enable the enforcement of plausible flow behavior. Finally, we extract volumetric
flow rate curves from sites of interest based on the dense flow solution to quantify
flow behavior (see section 2.4).
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2.1 4D DSA

Recent advances in the processing of DSA datasets have made the reconstruc-
tion of time resolved 3D image information possible [6]. Unlike traditional static
3D reconstruction, a time varying volume is reconstructed from only one single
transmittance image for each individual time instance. For this reason, reliance
on strong prior knowledge is necessary to make the reconstruction problem well
posed. Here, a static 3D mask of the vessel tree is reconstructed from the rota-
tional planar acquisitions and subsequently used for spatial regularization during
the backprojection step. Intensity levels for vessel interior voxels are filled with
DSA projection intensities using a multiplicative projection processing step.

The reconstruction step yields volumes where intensity levels are consistent
with the observed rotational acquisition of transmittance images. The values
from log subtracted DSA images are distributed in space yielding volumes where
intensity levels are proportional to the concentration of contrast agent in the
voxels.

2.2 Dense 4D flow estimation

Intensity values of 2D projection images of 3D fluid flows satisfy a conservation
equation of intensity values. In the more general 3D case, this observation is not
valid anymore. Instead, assuming contrast agent is a massless fluid transferred
by the velocity field of the fluid flow, a continuity law holds. Considering the
incompressibility assumption, the conservation relationship reduces to the well
known optical flow constraint relating the image I and its spatial and temporal
derivaties as well as the fluid velocity v due to the properties of the divergence
operator:

∇ · (Iv) + It = ∇I · v + I∇ · v︸ ︷︷ ︸
∇·v=0

+It = 0 (1)

Similar to [4], a physically correct dense flow estimation method can be con-
structed with the derived data term in Eq. (1). To allow the usage with imperfect
data, instead of strict adherence to the constraint, the flow estimation problem is
formulated as an energy minimization process, where the global energy depends
on both the data term and a regularizer to warrant well-posedness via enforcing
smoothness in the flow solutions. For the regularization, the diffusion regularizer
is used. It is known that this penalizes curl in the solution, however laminar flow
fields in vessels tend to be irrotational.

As described in Section 2.1, 4D DSA data is reconstructed from only one
single projection per frame and hence, artifacts are expected to distort intensity
values at locations where several vessels overlap. As the flow solution in our
method is obtained by minimizing a global energy function, local discrepancies
in the intensity values due to the artifacts can be compensated for.

Employing a diffusion regularizer, the optimization problem can be stated as

vopt = argmin
v

∫
Ω

‖∇I · v + ∂tI‖2 + λ‖∇v‖2dx (2)
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with the flow velocity field v and the image I together with its spatial derivative
∇I and temporal derivative ∂tI.

The proper treatment of the variational problem requires the specification
of boundary conditions that make the minimization problem well posed. The
used boundary conditions are derived from physical insights and are defined in
the following manner. Due to friction, the fluid velocity right next to the vessel
walls is zero and the common no-slip boundary condition can be applied on
wall segments in the form of a zero Dirichlet condition. On the other interfaces
corresponding to inlets and outlets of the modeled vascular segment, Neumann
type conditions are prescribed for the velocity.

2.3 Implementation details

Discretization and numerical solution For the discretization and numerical
solution of the minimization problem in Equ (2), we use a finite element based
approach.

To allow for the minimization problem to be solved numerically a discretiza-
tion of the vessel interior needs to be conducted. First the vessels are seg-
mented using a level-set approach based on a separate 3D rotational angiography
(3DRA) reconstruction readily available together with the 4D DSA reconstruc-
tion [6]. A tetrahedral volume mesh is then constructed using an adaptive re-
finement strategy.

In order to represent the problem in a finite element framework the weak form
of the minimization problem needs to be derived. By taking the first variation of
the energy function in the direction v∗ and using integration by parts we obtain
the following equation:∫

Ω

(v · ∇I)(v∗ · ∇I)− ∂tIv∗ · ∇I + λ∇v : ∇v∗dx = 0 (3)

Introducing a finite basis and thereby using the finite element approach, an
approximation to the solution can be obtained by solving a system of linear
equations. This numerical task was solved within the finite element software
framework FEniCS [7]. The optimality system was discretized using first order
Lagrangian elements for the velocity field v and the test function v∗. A sparse
iterative linear algebra solver (BiCGSTAB) was used to solve the arising linear
systems.

The optical flow constraint can be regarded as a linearized version of the
brightness constancy assumption, and for this reason, it only holds for small
displacements. To overcome this problem, we used an iterative method [8] that
accumulates displacement contributions from subsequent solutions to spatially
perturbed (warped) versions of the problem.

2.4 Flow quantification

Even though reconstruction of the 3D+t flow velocity fields constitutes the back-
bone of our approach, its purpose is to arrive to a consistent flow solution, from
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which quantities of clinical interest can be derived. The volumetric flow rate
is an important indicator of local blood supply and is of primary interest for
interventionalists. It quantifies the amount of fluid volume that is transferred
through vessel cross section interfaces per time unit. It can be computed based
on the fluid velocity field by integrating the dot product of the velocity vectors
and the surface normal along a test surface:

Q(t) =

∫
A

v · n dA (4)

with A being a cross sectional interface of the vessel and n its normals.
Volumetric flow rates can be considered to be constant along vascular seg-

ments assuming incompressibility of the fluid and inelastic vessel walls, and thus
can be estimated over arbitrary test surfaces. For practical reasons, we consider
the use of planar cross sections perpendicular to the 3D vessel centerlines at
various points in the vascular branches.

3 Data and Experiments

For the assessment of the proposed flow quantification method, synthetic as well
as phantom datasets were considered. Synthetic cases with known ground truth
have been generated using CFD simulations with various inflow parameters. Ad-
ditional flow quantification has been executed on real acquisitions of a vascular
bifurcation phantom, where only qualitative assessment is possible due to lack
of flow measurements.

Synthetic cases A digital model of a straight vascular segment of 4.8 mm
diameter was created. Using an in house CFD solver, datasets corresponding
to sequences of 4D-DSA intensity volumes as well as flow velocity fields were
created. For the simulations, a set of contrast agent and pulsatile blood inflow
curves were considered to account for different pulsatility patterns and inflow
rates. The total mean inflow rate was set to values ranging from 3 to 7 ml/s in
order to yield a total of 15 cases. Given the ground truth flow velocity fields,
a quantitative assessment of the accuracy of the mean flow rates could be car-
ried out. The assessment of the accuracy of the method is based on conducting
hypothesis testing on the regression slope for a set of grouped cases. Regression
lines are fitted to samples of measured - ground truth mean flow rate pairs using
robust linear regression. Confidence intervals of 95% on the regression slope are
then evaluated to contain the value 1 thus indicating the significance of the find-
ings. Confidence intervals are obtained for 5 groups of samples with increasing
max. flowrate (≤ 3,≤ 4,≤ 5,≤ 6,≤ 7ml/s) to investigate the impact of flow
rates on the accuracy.

Phantom case The phantom acquisition of a vascular bifurcation with an
aneurysm been made with a Siemens Artis Zeego flat panel detector angiographic
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Towards blood flow quantification using dense flow volumes 7

(a) A snapshot of the dense flow
field

(b) Confidence intervals of the regres-
sion slopes

Fig. 2. A snapshot of the dense flow field estimated from the phantom dataset (a)
Confidence intervals of the regression slopes computed for the different flow rate groups
(b).

system. Rotational images for subtracted 3D reconstructions were recovered us-
ing an acquisition rate of 30 frames per second. As contrast material iohexol has
been used. Due to the lack of flow measurements only qualitative findings are
reported for this case.

4 Results

Results for the synthetic experiments are illustrated on Fig. 2(b). Confidence
intervals of the regression slope for the 95% level are denoted using a box plot.
The value 1 is contained in all evaluation groups thus the measured mean flow
rates do not deviate from the ground truth significantly. For increasing inflow
velocities a slight underestimation of the flow rates is observed.

Flow solutions from the phantom dataset are consistent with the expected
flow behavior regarding consistency and orientation, for the 3D flow velocity
field an example is shown on Fig 2(a).

5 Discussion and Conclusions

We have demonstrated the feasibility of blood flow quantification by means of
dense flow estimation from intermediary 3D+t reconstructions. With the results
from the synthetic experiments we have illustrated its capabilities to yield ac-
curate flow rate measurements in simple cases using various inflow conditions.
Qualitative investigation based on phantom images confirms that using the 3D
modeling domain yields smooth and consistent flow solutions in more complex
domains as well.
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8 Peter Maday, Markus Kowarschik, Stefanie Demirci, and Nassir Navab

Despite the recent introduction of 4D DSA for clinical purposes, imaging of
time resolved 3D fluid velocity fields in the medical context is in its infancy.With
the proposal of a 4D blood flow quantification method, we hope to convince and
inspire clinicians to conduct 4D DSA imaging.

Even though the purpose of compiling the observations into a time resolved
series of 3D flow velocity fields is to allow efficient regularization of the solutions,
this step offers more potential than just the extraction of flow rate information.
For future work, we aim at providing valuable complementary information such
as wall shear stress [9] and pressure [10] measurements in addition to the esti-
mated flow rates.
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Abstract. A new vascular structure segmentation method, which is based
on a cylindrical flux-based higher order tensor (HOT), is presented. On
a vessel structure, HOT naturally models branching points, which create
challenges for vessel segmentation algorithms. In a general linear HOT
model, embedded in 3D, one has to work with an even order tensor due to
an enforced antipodal-symmetry on the unit sphere in 3D. However, in sce-
narios such as in a bifurcation, the antipodally-symmetric tensor models
of even order will not be useful. In order to overcome that limitation, we
embed the tensor in 4D and obtain a structure that can model asymmetric
junction scenarios. Thus, we will demonstrate a seed-based vessel segmen-
tation algorithm, which exploits a 3rd or 4th order tensor constructed in
4D. We validate the algorithm on both synthetic complex vascular struc-
tures as well as real coronary artery datasets of the Rotterdam Coronary
Artery Algorithm Evaluation framework.

Keywords: vessel tree segmentation, higher order tensors (HOT), branch
modeling, cylindrical flux, coronary arteries, HOT tractography

1 Introduction

Extraction of vascular structures such as coronary and cerebral arteries is an im-
portant step in detection and analysis of vessel anomalies and pathologies such as
aneurysms, stenoses, and plaques. However, manual segmentation is an exhaus-
tive task for the experts. As solutions to segmentation, first, image filtering and
enhancement methods were proposed [1, 2]. Lately, multi-hypotheses tracking [3,
4] and data driven [5] approaches have been suggested for vessel segmentation. A
broad review of these methods can be found in [6] and [7] surveys.

Minimal path techniques are another category for vessel extraction [8–10]. For
instance, the vessel was modeled as a 4D curve of a centerline and radius in [10].
This approach considered isotropic measurements through a sphere fitted to a
vessel. In contrast, the vessel orientation was modeled by adding cylinders to this
model, in [11], where an intensity-based rank-2 tensor was fit to a vessel, which
mimicked Diffusion Tensor Imaging (DTI). The anisotropic tensor inside the vessel
drove the segmentation analogously to a tractography approach in DTI. Although
the method in [11] provided advantages in terms of modeling vessel orientational
information, for modeling the whole vessel tree, it employed a separate branch
detection scheme in order to capture bifurcation points in a vessel. The latter is

68



due to choice of a rank-2 tensor, which becomes isotropic in bifurcation regions
of vessels. Generally, for the problem of patient-specific vascular tree modeling,
an initial segmentation step that produces a 3D segmented volume has to be
followed by a separate branch detection scheme, which later is used in creation of
a vascular tree model, and sometimes followed by an external mesh construction
scheme to model n-furcated vessels for mesh editing and further modeling [12, 13].

In recent studies of Diffusion MRI, it has been shown [14, 15] that the rank-2
diffusion tensor model in DTI has limitations, the most important of which oc-
curs when there is orientational heterogeneity of the fibers in the voxel of interest.
To overcome this difficulty, [14] proposed high angular resolution diffusion imag-
ing (HARDI), which exploited imaging with diffusion-weighting gradients applied
along many directions, distributed isotropically on the unit sphere, and which can
better represent the underlying fiber crossings. In addition to usage of generalized
higher order tensors in HARDI methods [15, 16], more flexible approaches via ori-
entation distribution functions (ODFs) as an alternative for modeling crossings,
were presented [17–19]. However, they require relatively higher number of diffu-
sion directions and a follow-up effort for mode extraction. [18] handles asymmetric
situations only via the ODF field by considering inter-voxel information.

In analogy to fiber-crossing locations of white-matter, vascular structures in-
clude n-furcations, which are locations where n branches exit from the same vessel
point, hence have to be modeled properly. Inspired by the idea of generalized lin-
ear tensors in HARDI, we model the n-furcations of the vascular structures using
a Higher Order Tensor (HOT), however embedding them in 4D, which is described
in § 2. Our technique brings a unified approach to the problem of whole vascu-
lar tree extraction, which includes simultaneously modeling both tubular sections
and n-furcations of the vascularities. Results are presented and validated in § 3,
followed by conclusions in § 4.

2 Method

2.1 Higher Order Tensor Model in 4D

In HARDI methods, the diffusivity function can be approximated by an mth order
Generalized Cartesian Tensor (GCT) in 3D as follows [15]:

S(g) =
3∑
i=1

3∑
j=1

· · ·
3∑
k=1

3∑
l=1

gigj , . . . gkglDi,j,...,k,l, (1)

where gi is the ith component of the 3D unit vector g ∈ S2 , and Di,j,...k,l are
the tensor coefficients. Number of indices represents the order of the tensor D. As
can be observed, when m is odd: S(−g)=−S(g), the GCT model forces negated
measurements at the antipodals of the sphere. On the other hand, when m is even:
S(−g)=S(g) can not model an antipodal asymmetric situation. For the HARDI
application, this was not crucial, as the diffusion measurements are positive and
symmetric on the sphere, even order tensors (m = 2, 4, 6) were mostly utilized.

In our problem, a GCT in 3D can not model the geometry of the vessel, which
is symmetric along the vessel and asymmetric at the bifurcations. In Fig. 1, the
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Fig. 1: A 60×60×60 synthetic Y-junction volume: Comparison between S(g) measure-
ments (left) and their rank-2 tensor fit model (right).

measurements S(g) taken from multiple orientations (described in § 2.2) for a
Y-shaped vessel are depicted on the left, and on the right are the corresponding
rank-2 tensors fit to S(g). As can be observed, although tubular parts of the vessel
are correctly represented, rank-2 tensors are not able to model the geometry of
bifurcations. Similarly, a rank-4 tensor will not represent the correct geometry of a
bifurcation. Furthermore, odd-order GCT in 3D enforces negative measurements
at the opposing directions, therefore, is not suitable in this case either.

We suggest a 4D third or fourth order tensor, which is able to model both
antipodal asymmetry and symmetry of a vessel n-furcation, where the fourth
dimension measurements along g4 will be used to suppress the components in
unwanted directions such as in the opposing directions at Y-junction branches.
Mathematically, our tensor model is then described as:

S(g) =
4∑
i=1

4∑
j=1

4∑
k=1

gigjgkDi,j,k or S(g) =
4∑
i=1

4∑
j=1

4∑
k=1

4∑
l=1

gigjgkglDi,j,k,l, (2)

where S(g) is a measurement, g = [g1, g2, g3] is an orientation vector on the unit
sphere S2, and g4 is defined as follows:

g4(g ) =
1

1 + e(|I(rg+x s)−I(x s)|)
, (3)

where I is the image intensity function (I : R3 −→ R), x s is a center point.
Note that this model in 4D lifts the limitation with symmetry of measurements,
and one can have arbitrary measurements at g and −g directions for a third
order tensor. The absolute intensity variation along the vessel and the branches
is expected to be less than the variation in other directions. The function(3)
is designed exactly to do that, and measures similarity of the intensity of the
centerline coordinate with respect to those of given orientations. Even though the
4th-order tensor still has an antipodal symmetry, the 4th component in 4D, which
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Fig. 2: Illustrations of (a) directional measurement model: each Cyli is characterized
by the direction vector g , the height h, and the circle centered at point xl with radius
r; (b) cross sectional view of the cylindrical model.

acts like a measurement filter, helps in estimation of main branch directions in
an n-furcation. We describe a flux-based intensity model to create measurements
S(g) next.

2.2 A Flux-based Measurement Model

A hollow cylinder along each sampled orientation g is represented by a stack of
circles and denoted as follows:

cyl =
⋃

l=0,··· ,h

circle(xl, r, g ), xl = xs + g l, (4)

where xl ∈ R3 is defined as a point along the centerline of the cylinder, g also
indicates the normal vector to the circle: circle(xl, r, g ) with radius r, and h = 2r
is defined as the height of the cylinder (see Fig. 2).

Circles that define the cylinder are equi-angularly discretized in polar coor-
dinates. Next, sampling a set of orientation vectors gi over the unit sphere S2,
each measurement Si at the given direction gi is a flux-based feature, which is
modeled by an accumulation of image gradient magnitudes. Mathematically, the
measurements along the cylinder are calculated as follows:

Si =
h∑
l=0

 2

N

N/2∑
k=1

max(|< OI(f k),u k >| , |< OI(f πk ),u πk >|)

 , (5)

where OI(f k) is the image gradient vector at the sampled point f k and uk =
xl−f k

|xl−f k| (Fig. 2-b). To minimize the effects of the bright structures situated near

the vessels, we pair diametrically opposed points as suggested in [3], fN
2 +k = f πk .

Although the idea is similar to the original flux function [3], which calculates the
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flux around a cross section, our measurements are less sensitive to noise due to
the introduced cylindrical model. After the flux-based measurements Si for each
gi are computed, a radius is estimated using the technique described in [11].

2.3 Higher Order Tensor Fitting and Decomposition

In this paper, we chose to exemplify m = 4th order tensor estimation in 4D to be
able to model up to a trifurcation. To fit a 4D fourth order tensor to the mea-
surements: first, we stack the components of the tensor, and due to permutational
symmetry (D1112 = D1121 = D1211 = D2111), there exists 35 components in total:

d =
[
D1111 D2222 D3333 D4444 D1112 D1113 D1114 D2221 D2223 · · · D1234

]T
.
(6)

We re-arrange Eq. (2) to get
Si = G id , (7)

where Gi is the ith row of the matrix, which is constructed as follows:

Gi =
[
g4i1 g4i2 g4i3 g4i4 4g3i1gi2 4g3i1gi3 4g3i1gi4 4g3i2gi1 4g3i2gi3 · · · 24gi1gi2gi3gi4

]
. (8)

Applying least squares fitting, the tensor components are estimated.
Now, we have a D4×4×4×4 tensor, which models the vessel in 4D. After going

one high up in dimensions, in order to come back to the vessel physical space, we
decompose the tensor to find its principal directions using a Higher Order Tensor
Decomposition method [20]. We utilize one of the higher-order extensions of the
matrix singular value decomposition: Tucker decomposition that computes the
orthonormal spaces associated with the different axes (or modes) of a tensor [21].
The Tucker decomposition of an M ×N × P × Q (for our case, M = N = P =
Q = 4) tensor D of order 4 is given by:

D =
M∑
I=1

N∑
J=1

P∑
K=1

Q∑
L=1

Λ IJKLU iI ⊗ V jJ ⊗W kK ⊗Z lL, (9)

where ⊗ denotes the tensor (or outer) product: x ⊗ y , xyT . The matrices U ,
V , W , and Z are orthogonal; U keeps the modes of the tensor, and Λ keeps
the eigenvalues. Matrix slices of Λ along any mode are chosen to be mutually
orthogonal with a decreasing Frobenius norm. In this case, the Tucker decompo-
sition is called the Higher Order Singular Value Decomposition (HOSVD), which
can be viewed as a generalization of the classical SVD for tensors.

2.4 Implementation Details

The algorithm starts from a user selected seed point preferably chosen from high
contrast regions over a vessel. For the specific application of coronary arteries,
to cover the typical radius range, values are selected from rmin = 0.25mm to
rmax = 5.0mm with a fixed step of 0.25mm in radius estimation as in [11]. 64
unit directions on S2 are used in tensor fitting. To estimate the number of branches
at a centerline point, we calculate the eigenvalues of the matrix Λ in (9). The
ratio of the eigenvalues to the largest eigenvalue is monitored, and a threshold
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Fig. 3: Estimated modes (green) of the higher order tensors (red) are shown on syn-
thetic Y-junction and T-junction volumes. Modes of the tensors along the centerline are
depicted by blue.

value of 0.7 is selected in this work to determine the number of vessel orientations.
To detect the vessel centerline directions, we extract the orientation vectors from
corresponding columns of U . Using those, HOT tractography technique is uti-
lized to trace the vessel centerline [22]. Fig.3 depicts the detected eigen directions
(green) of the higher order tensors (red) on synthetic Y and T junction volumes.
Modes of the tensors along the centerline are depicted by blue. Although the
tensors become perturbed along the edges, they correctly represent the expected
geometry along the centerline of the vessel.

3 Results

We first evaluate our method on synthetic vascular images with known ground
truth. The synthetic data simulate volumetric images of vascular trees with vary-
ing contrast [23]. Dice overlap (OM) is computed to evaluate the performance.
Fig. 4(a) depicts a sample vascular synthetic volume. After selecting a single seed
on one of the branches, our algorithm extracts the entire tree automatically. Ex-
tracted vessel tree with its thickness is also rendered on the right (green surface).
On average, 95% OM ratio is obtained over five synthetic vasculature.

We performed quantitative validation on the database provided as part of the
Rotterdam Coronary Artery Algorithm Evaluation Framework [24]. This facil-
itates standardized evaluations of centerline extraction methods over the same
datasets with ground truth and with standard performance measures. So far, the
results of 24 methods are evaluated in this framework. The proposed method was
applied to all 32 datasets (including the 8 training and 24 testing data sets),
and the results were evaluated by organizers. We ranked the first in the semi-
automatic algorithms Category #2, in general, our average ranking is 10.20th
(See Table 1). In fact our algorithm is nearly automatic: we selected only a single
seed for each tree. The two automatic algorithms just above ours have the rank-
ings 10.09 and 10.13. We rank the first among Category #1 (automatic) and #2
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(semi-automatic) in the Overlap (OV) measure by 97.3% overlap1. Fig. 4 depicts
a sample result from Rotterdam training database. Violet represents the reference
centerline and radius that surrounds centerline. Our result is shown by orange; it
takes less than 30 seconds to create the whole vessel tree in these experiments.

Table 1: Summary of Rotterdam Results
Measure % / mm score rank

min. max. avg. min. max. avg. min. max. avg.
OV 81.8% 100.0% 97.3% 41.4 100.0 72.9 1 20 5.68
OF 7.1% 100.0% 77.4% 4.9 100.0 63.2 1 22 7.06
OT 83.0% 100.0% 97.7% 44.8 100.0 75.4 1 18 5.30
AI 0.15 mm 0.55 mm 0.34 mm 18.3 59.3 32.0 4 23 14.40

Total 1 23 10.20

Fig. 4: Top Left-Top Right-Bottom Left-Bottom Right: (a) Synthetic vascular data with
varying contrast; (b) Extracted vessel tree from synthetic data; (c) Extracted centerline
(orange) and reference centerline (violet) from dataset 6 of Rotterdam database; (d)
Extracted radius (orange) and reference radius (violet) is shown around centerline.

4 Conclusions

We presented a new method for extracting a whole vessel tree using an HOT
flux-based tractography idea, which was inspired by HARDI techniques. One ad-
vantage of the proposed method is the seamless modeling of the n-furcations
jointly with tubular sections within the same mathematical model. We achieved
this by embedding a general cartesian tensor into a 4D space so that antipodal
asymmetries in Y-junction-like situations, which are abundant in vascular trees,
could be modelled. Although in this paper, we showed the results with a 4th
order tensor, a 3rd order tensor is equally able to model a vessel tree with bi-
furcations only. Once an HOT is estimated, projecting the constructed tensor
using an HOSVD, the main orientations of the vessel tree at a centerline point

1 Please check the url to see our results at: http://coronary.bigr.nl/preview/R68TKM
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are naturally extracted and traced. The radius of the vessel is also estimated by
using a simple maximum norm criterion of a rank-2 tensor fit over a range of
radii. We demonstrated the performance of the method by quantitative analy-
sis of synthetic volumes and Rotterdam Coronary Artery Evaluation Framework.
Our future work includes working on more complex vasculature with n-furcations.

References

1. Frangi, R., et al.: Multiscale vessel enhancement filtering. MICCAI (1998) 130–137
2. Krissian, K.: Flux-based anisotropic diffusion applied to enhancement of 3-d an-

giogram. IEEE TMI 21(11) (2002) 1440–1442
3. Lesage, D., et al.: Bayesian maximal paths for coronary artery segmentation from

3d CT angiograms. MICCAI (2009) 222–229
4. Friman, O., et al.: Multiple hypothesis template tracking of small 3D vessel struc-

tures. MIA 14(2) (2010) 160–171
5. Zheng, Y., et al.: Robust and accurate coronary artery centerline extraction in CTA

by combining model-driven and data-driven approaches. In: MICCAI. (2013) 74–81
6. Kirbas, C., et al.: A review of vessel extraction techniques and algorithms. ACM

Comput. Surv. 36 (June 2004) 81–121
7. Lesage, D., et al.: A review of 3D vessel lumen segmentation techniques. MIA 13(6)

(2009) 819–845
8. Deschamps, T., et al.: Fast extraction of minimal paths in 3d images and applications

to virtual endoscopy. MIA 5(4) (2001) 281 – 299
9. Cohen, L., et al.: Global minimum for active contour models: A minimal path

approach. International Journal of Computer Vision 24 (1997) 57–78
10. Li, H., et al.: Vessels as 4-d curves: Global minimal 4-d paths to extract 3-d tubular

surfaces and centerlines. IEEE TMI 26(9) (2007) 1213–1223
11. Cetin, S., et al.: Vessel tractography using an intensity based tensor model with

branch detection. IEEE TMI 32(2) (2013) 348–363
12. Yuan, F., et al.: Modeling n-furcated liver vessels from a 3d segmented volume using

hole-making and subdivision methods. IEEE Trans Biomed Eng. 59 (2012) 552–561
13. Bogunovic, H., et al.: Anatomical labeling of the circle of willis using maximum a

posteriori probability estimation. IEEE TMI 32(9) (2013) 1587–99
14. Tuch, D.S., et al.: High Angular Resolution Diffusion Imaging of the Human Brain.

In: The International Society for Magnetic Resonance in Medicine. (1999)
15. Ozarslan, E., et al.: Generalized diffusion tensor imaging and analytical relationships

between diffusion tensor imaging and hardi. Magn Reson Med 50(5) (2003) 955–965
16. Barmpoutis, A., et al.: Symmetric positive 4th order tensors & their estimation

from dw-mri. In: IPMI. (2007) 308–19
17. Tuch, D.: Q-ball imaging. Magn. Reson. Med. 52(6) (2004) 1358–72
18. Barmpoutis, A., et al.: Extracting tractosemas from a displacement probability field

for tractography in dw-mri. In: MICCAI. (2008) 9–16
19. Tristan-Vega, A., et al.: Estimation of fiber orientation probability density functions

in high angular resolution diffusion imaging. Neuroimage 47(2) (2009) 638–50
20. Kolda, T.: Tensor decompositions and applications. SIAM Review 51 (2009) 455–00
21. Bergqvist, G., et al.: The higher-order singular value decomposition theory and an

application. IEEE signal processing magazine 27(3) (2010) 151–154
22. Descoteaux, M., et al.: Deterministic and Probabilistic Tractography Based on

Complex Fibre Orientation Distributions. IEEE TMI 28(2) (2009) 269–286
23. Hamarneh, G., et al.: Vascusynth: Simulating vascular trees for generating volumet-

ric image data with ground-truth segmentation. CMIG 34(8) (2010) 605–16
24. Schaap, M., et al.: Standardized evaluation methodology and reference database for

evaluating coronary artery centerline extraction algorithms. MIA 13 (2009) 701–714

75



This proceedings has been generated to reflect the original papers accepted to the workshop CVII-
STENT arranged together with the conference MICCAI 2014.


	CVII_STENT_2014_proceedings
	workshop_proceedings_preface
	CVII_STENT_2014_proceedings
	workshop_proceedings_preface
	Paper 10\VolumeConstrainedDenoising
	Paper 3\manuscript
	Paper 11\CVIISTENT14XrayDepthMaps
	Paper 11\abdomen_Xray-depth-map
	Paper 12\culprit_nonculprit
	Paper 2\miccai_2014
	Paper 13\Side-Branch Guided Registration of Intravascular Ultrasound Pullbacks in Coronary Arteries
	Paper 4\miccai_workshop
	Using spatiotemporal patterns of the arterial wall to assist treatment selection for carotid atherosclerosis
	Introduction
	Material & Methods
	Design Issues
	Optimization & Evaluation

	Results
	Discussion


	Paper 7\CVII-STENT2014_NO_7_cameraready
	Paper 8\Cetin_Suheyla_Unal_Gozde_CVII2014


	workshop_proceedings_last_page



